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Abstract 
 
This paper presents a unified dynamics solver 

developed by the author which was first released in 
Autodesk™ MAYA 8.5. The solver however is a 
standalone library which could potentially be used in 
other applications. Current dynamics solvers are 
usually fine tuned for specific effects such as rigid 
bodies or cloth. Handling the interaction between these 
solvers is often problematic as one of them takes 
precedence over the others. In our Nucleus solver we 
model all matter as a simplicial complex: a 
generalization of a triangle mesh that also includes 
points, curves and solids. This allows interactions such 
as collisions between various elements of different 
dimensionality. The internal deformations such as 
stretch and bend are handled through constraints 
instead of springs. This makes the simulation more 
stable for stiff materials such as cloth. Through mutual 
interactions and constraints many interesting 
phenomena emerge automatically. The basic 
philosophy behind Nucleus is that complexity arises by 
combining simple constraints. 

 
1. Introduction 
 
The convincing simulation of interacting 

deformable objects is hard to achieve using traditional 
animation techniques such as key-framing alone. 
Therefore there is a need in computer graphics to rely 
on physics-based dynamics solvers. Instead of 
specifying exact poses through key frames an animator 
specifies material properties of the object’s and 
external forces. Given this information the dynamics 
solver then ideally computes snapshots of the states of 
all the objects over fixed time-steps. Most current 
solvers are fine tuned for a specific effect such as rigid 
bodies and cloth. Resolving interactions between such 
solvers can become problematic. For example, imagine 
a rigid body like a soccer ball being kicked in a goal. 
There will be a two way interaction between the ball 
and the net. Achieving this effect by connecting a rigid 
body solver to a curve-based solver for the goal net can 

be problematic. In this paper we present a solver that 
tries to resolve these interactions simultaneously. 

We describe both how we model different shapes of 
matter and how we simulate them. We decided to use a 
simplicial complex as our shape model as it includes 
points, curves, surfaces and solids in a unified 
framework. For the simulation part we use a space-
time based approach for the collisions and a constraint 
based approach to account for deformations. This 
approach results in simulations that are relatively stable 
for stiff materials such as cloth. 

By allowing various elements of matter to interact 
in this manner we get interesting emergent behaviors. 
Even though each interaction is simple more complex 
behaviors emerge. For example a flapping flag can be 
simulated using a simple directional wind field and an 
inextensible piece of cloth. The flapping behavior 
emerges from the drag and lift constraints battling the 
stretch constraint. The behavior emerges without the 
need for a complicated air flow model. Throughout our 
research we emphasize simplicity as it vastly reduces 
the amount of code and consequently the amount of 
potential bugs. This is not just an aesthetic bias on our 
part rooted in a desire to achieve mathematical 
elegance. In practice adhering to this principle results 
in more robust and stable commercial products. 

 
2. Previous and Related Work and the 

History of Nucleus 
 
Simulations based on physics are evidently not 

novel in computer graphics. This approach was 
pioneered in the late eighties by many researchers [18]. 
Early work focused mainly on spring-based models for 
deformable matter and used either explicit or implicit 
methods. In addition many works have focused on 
simulating rigid bodies [5,13,17]. As far as we know 
the first paper to handle deformations as constraints 
was Provot’s strain limiting procedure used for cloth 
[16], see also [9] and the pioneering work of Moreau 
[14]. Since then others have used this approach [12,15] 
to good use. Recently this approach seems to gain 
acceptance in academia as well [10]. 



 The system closest in spirit to ours is the position 
based dynamics work of Müller et al. [15] developed 
independently from us and the collision work by 
Bridson et al. [6]. We do not cover here in detail the 
vast literature on this subject but only cite work that 
directly inspired us or is closely related. We refer the 
reader instead to one of the many surveys on this topic 
and the references in the papers cited. The goal of this 
paper is to give an overview of the ideas and 
techniques that were implemented in the Nucleus 
library. 

Research on the Nucleus solver started as a small 
project by the author of this paper in the fall of 2000 in 
Seattle to create a very simple cloth solver for a cool 
live demo of smoke interacting with cloth. The idea 
was to replace springs with hard links. Since cloth is 
not stretchy it seemed like a bad idea to use very stiff 
springs to model it. So instead we started with hard 
links treated like constraints. Stiff springs have several 
problems. Explicit integrators require small time steps 
to achieve stability which result in long simulation 
times. On the other hand stable implicit time 
integration schemes damp out off spring motion which 
results in overly damped animations. We will make 
these points more concrete in a simple setting below.  

The system we implemented initially was so simple 
that we wrote a version for the Palm just for fun back 
in 2001 for a very small 8x8 piece of cloth, followed 
by an implementation on the PocketPC with variable 
resolution. Both demos were “beamed” around at that 
time. We also showed a demo of cloth interacting with 
smoke in the “Visual Simulation of Smoke” paper 
presentation at SIGGRAPH in Los Angeles in 2001. 

 But it wasn’t until the author of this paper showed 
the demos at the SIGGRAPH 2003 annual 
Alias|wavefront’s user’s group in San Diego that some 
buzz was generated amongst our user base. 
Subsequently we were asked by upper management at 
Alias|wavefront to replace the existing cloth solver in 
MAYA with our new one. 

This task was quite a challenge since the existing 
cloth solver in MAYA was pretty sophisticated. Soon 
after we got seriously involved in this project we 
realized that our framework could accommodate other 
elements than cloth. That happened somewhere in the 
summer of 2004 and that was when the concept of a 
Nucleus solver really took off. After that we wrote 
many prototypes and the final version of the solver was 
written in the (hot) fall and (early) winter of 2005 in 
Toronto, Canada. It was then further refined and 
integrated into MAYA during 2006. 

We made sure to build an API around our solver 
such that any changes at a low level would not affect 
function calls on the MAYA side. Our Nucleus solver 
is tiny compared to the MAYA source code: about a 

meager 100 files versus the 40,000 or so files 
populating the MAYA code base. 

The capabilities of the new solver were first 
demonstrated at Autodesk’s user’s group at 
SIGGRAPH 2006 by Duncan Brinsmead in Boston in 
July and later in a key note talk by the author at 
EUROGRAPHICS 2006 in September in Vienna. The 
solver was first released in early 2007 in Autodesk™ 
MAYA 8.5 Unlimited with the release of nCloth. This 
release only exposed the cloth capabilities. In 2008 we 
released an nParticle feature allowing the interaction 
between particles and nCloth objects. We are hoping to 
add many more features in the future and enhance the 
Nucleus solver. 

 
3. Shape Model: Simplicial Complexes 
 
Since we are interested in modeling a whole range 

of shapes in a unified manner we decided to use the 
theory of simplicial complexes. It is a well known fact 
that any surface can be approximated by a triangular 
mesh to any arbitrary precision. A generalization of 
this result is a theorem first proved by Brouwer in 1910 
which loosely states that “Every continuous mapping 
can be approximated by a piece-wise linear simplicial 
ma  precisely in math-speak: p.” Or more

ܐ܂  ܚܗ܍ܕ܍ : 
Let ܭ and e comple e  ite.  ܮ b xe

ap ݄
there is an ܰ su h  h s a simplicial 

s; l t ܭ be fin
Given a contin  |ܭ| ՜ uous m |ܮ|

c that ݄
approximation ݂   sdே : K → L. 

a 
For our purposes it is sufficient to define a 

simplicial complex as an assemblage of simplices. A 
simplex is a generalization of a triangle to any 
dimension. Figure 1 shows four different k-simplices 
that model points, edges, triangles and tetrahedra. 
More complicated shapes are modeled by gluing these 
building blocks together. The blocks do not need to 
have the same dimension as shown in Figure 2. The 
definition of a simplicial complex is purely topological 
as it establishes a relationship between elements of an 
arbitrary set. The latter can be points in space, masses, 
colors, etc. We therefore neatly separate the topology 
from the geometry. In practice our implementation of 
the simplicial complex code contains only ints and no 
floats for example.  

 

 
 
Figure 1: four k-simplices. 



 
Figure 2: Two examples of a simplicial complex. 

The neat aspect of using a unified model for the 
shapes is that it leads to a very elegant implementation 
using only a single data structure: 

 
class simplex { 
   int k; 
   int sign; 
   int vertex[k+1]; 
   int child[k+1]; 
   int n_parents; 
   int parent[n_parents]; 
}; 
 
For each simplex we store its dimension k. We also 

store the k+1 indices of the elements and the k+1 (k-1)-
simplices that it contains. For example a 2-simplex 
(triangle) contains 3 1-simplices (edges). A simplex 
can have an arbitrary number of parents. For example, 
a point (0-simplex) in a mesh can have an arbitrary 
number of incident edges (1-simplices). In this case the 
number of parents of the point is commonly called its 
valence. We also store a sign for each simplex for the 
following reason. For many operations it helps if the 
indices of the elements are stored in lexicographical 
order. However, this rearrangement of the indices can 
change the orientation of the simplex. When the 
number of transpositions is odd the sign is -1 otherwise 
it is 1. A zero sign value indicates that the element 
does not have an orientation. The sign also allows 
many algebraic operations to be simplified on 
simplices.  

In this paper we will not get into all the details of 
implementing operations on simplical complexes. 
However, the above data structure allows us to 
implement many queries effortlessly that are needed to 
set up the constraints described below.  

We encourage the reader who is interested in 
learning more about this topic to consult the excellent 
introduction to this topic by Alexandrov [1]. Also we 
recommend his more detailed monograph which has 
proven to be very helpful [2]. Both books are also very 
affordable because they have been cheaply reprinted by 
Dover publication. 

 
 
 

4. Dynamics 
 
4.1. Basic Equations 
 
The dynamics of a simplicial complex is defined by 

the motion of its N vertices. We can compact this 
description in a  3N vector: ܠሺݐሻ ൌ ൫ݔଵሺݐሻ, … ,   .ሻ൯ݐேሺݔ

 
The particles evolve due to external forces and 

internal deformations defined by the simplices and 
other factors as explained below. The laws that govern 
the motion of the particles are well known since 
Newton stated them in his famous Principia in 1687. 
In particular his second law states that (assuming unit 
masses): 

ሷܠ  ሺݐሻ    ൌ  െ ݂ሺܠሻܠሺ0ሻ ൌ ሶܠܠ  ሺ0ሻ ൌ  ܞ 
 

 
where ݂ሺݔሻ is the internal energy due to deformations 
and  model external forces like gravity. The initial 
state is defined by the initial positions and velocities of 
the particles. An alternative way to specify the 
dynamics is to require that the particles minimize the 
total energy at each instant of time: 

ܧ  ൌ  12 ሶ|ܠ|  ଶ   ݂ሺܠሻ   ·  ܠ
 
The first term is the total kinetic energy, the second 

term is the potential energy and the last term is the 
work done by the external forces. A very good 
introduction from a mathematical point of view is the 
monograph by Arnold [3]. These equations have been 
around for over 300 years and one would expect that 
there is a standard numerical procedure to solve them. 
However, this is not the case and to understand the 
difficulties we turn to a simple problem in more detail. 

 
4.2. On the Motion of a Simple Spring 
 
It is interesting that even the problem of solving the 

dynamics of a simple linear spring exhibits the 
behavior and difficulties common to more 
sophisticated solvers. This section is not a thorough 
overview of numerical integrators. For a good review 
see the excellent book by the group from my alma 
mater at l’Université de Genève [11]. The intent here is 
to focus on one of the simplest problems and 
understand the basic numerical problems one can 
encounter. 



The equations for  are  a linear spring
ሷሺݔ  ሻ ൌ െݔሺݐሻ ݔሺ0ሻ ൌ ሺ0ሻݒ ݔ ൌ ሶሺ0ሻݔ ൌ  .ݒ 

ݐ
 
To visualize the motion of the spring we can draw 

its trajectory in the phase space ሺݔ,  ሻ, a plane in thisݒ
case. From the nserva on of e ergy: co ti n

ܧ ൌ ଶݒ  12   12 ݔଶ ൌ ଶݒ 12   12 ݔଶ 
 

we know that the trajectories are circles in the phase 
plane whose radius is a function of the initial state as 
shown in Figure 3. The equation can also be computed 
analytically in this case. There is an elegant way to 
obtain this result by introducing the complex number ݖ ൌ ݔ   In this manner the equation for the motion .ݒ݅
of the spring reduces to an ordinary differential 
equation: 

ሶሺݖ  ሻݐ ሻݐ ൌ  െ݅ݖሺሺ ݖ ݖ  0ሻ ൌ  
Whose solution is ݖሺݐሻ ൌ  ݁ି௧. This proves that theݖ 
motion proceeds clock-wise along the trajectories. The 
equation in the complex domain also shows that the 
trajectories are tangent to the vector field as shown in 
Figure 4. 

 

 

 
Figure 3: Trajectories of the spring in phase space. 

 

 
Figure 4: Trajectory of the spring is tangent to the 

vector field. 

 
We now analyze three methods to solve this 

equation numerically with a fixed time step ݄. The 
time derivative between two consecutive states is 
approximated by: 

ሻݐሶሺݖ  ൎ ଵݖ  െ ݄ݖ . 
 
In an explicit scheme the right hand side of the 

equation is evalu te a rr nt state, so that a d t the cu eݖଵ ൌ ሺ1  ݄ሻଶ݁ିݖ.  

 
In an implicit scheme on the other hand the right 

hand side of the equation is evaluated at the next state 
which results in he o atet  f llowing upd ଵݖ  ൌ ሺ1  ݄ሻିଶ݁ିݖ.  

 
We see that in an explicit scheme the motion of the 

spring is an outward spiral. This means that it gains 
energy over time and is thus inherently unstable. This 
is undesirable in general. The implicit scheme on the 
other hand is unconditionally stable by dissipating 
energy and the motion is that of an inward spiral. The 
problem with implicit methods is that there is no direct 
control over the amount of dissipation which depends 
on the time step. Figure 5 depicts this situation. 

 

 
Figure 5: Trajectory of the spring in phase space using 

explicit integration (left) and implicit integration (right). 

displacement



 
Figure 6: Symplectic trajectories for h=sqrt(2), 1 and 

0.5. 

A natural alternative is to combine the two schemes 
hoping that the dissipation of the implicit scheme 
counteracts the energy gain of the explicit one. In fact 
such schemes are called symplectic. The basic idea is 
to go implicit on the velocity and explicit on the 
position. We have not found an elegant way to derive 
the scheme using complex numbers. In velocity-
position space xt state is: the equation for the neቀݒଵݔଵቁ ൌ  ቀ1 െ݄݄ 1 െ ݄ଶቁ ቀݒݔቁ 

 

 
The trajectories are now closed curves or curves 

that are bounded in phase space. Figure 6 shows 
several examples for different time steps. Interestingly 
for ݄ ൌ 1 we obtain a hexagon and for ݄ ൌ √2 we get 
a quadrilateral. For some cases such as ݄ ൌ ଵଶ the 
trajectory fills up a space bounded by two ellipses.  
Motivated by pure intellectual curiosity we have 
computed the time step that will produce any given n-
gon. We achieved this by computing the eigenvectors 
of the matrix in the symplectic equation: 

 1 െ 2݄ േ ݄݅ ඥ4 െ ݄ଶ/2 
 
We will not provide the details here. Note that from 

the eigenvalues we deduce that the method is unstable 
for time steps that are larger than 2 in this case. 

The name of the integrator comes from the fact that 
the mapping preserves area, which is clearly the case 
for the above matrix since its determinant is equal to 
one. But why is it called “symplectic”? What does that 
word mean? An English dictionary defines it as: 
“Plaiting or joining together; - said of a bone next 
above the quadrate in the mandibular suspensorium of 
many fishes, which unites together the other bones of 
the suspensorium.” Why name a mathematical property 
method after a fishbone? This is clarified in [11], the 
name was coined for other reasons by the famous 
physicist and mathematician Hermann Weyl. He had to 
name the property of a group he was working on and 
wanted to name it “complex.” However that name was 
already taken to refer to an extension of the real 
numbers. So he replaced the Latin root “com” to its 

equivalent Greek root “sym” to concoct the word 
“symplectic.”  

 
Figure 7: Three types of constraints: stretch, shear 

and bend. 

 
5. Deformations as Constraints 
 
The moral of the spring example is that it is a good 

idea to go implicit on the velocities and explicit on the 
positions once the velocities are computed. However, 
this procedure is still unstable for the case of springs. 
Therefore, instead of using springs we use hard 
constraints which can be softened if a bouncy behavior 
is desired. These hard links correspond to a resistance 
to stretch within a body. This is a relationship between 
two points of the simplicial complex, usually 
corresponding to its edges (1-simplices). We call this a 
type 1 constraint. Similarly we can define a type 2 
“shear” constraint for each pair of 1-simplices by 
constraining the angle between them and we define a 
type 3 “bend” constraint between an edge connecting 
two 2-simplices. These three types of constraints are 
shown in Figure 7.  

With these three constraints we are able to model 
the deformations of simplicial complexes of any 
dimension as shown in Figure 8. The number next to 
each simplex is the ratio: # constraints# ݇ െ simplices 

 

 
 The type of constraint has different interpretations 

depending on the k-simplices involved. For example, a 
type 2 constraint is a bending constraint for 1-simplices 
but a shear constraint for 2-simplices. Similarly a type 
3 constraint is a twist constraint for 1-simplices and a 
bend constraint for 2-simplices. It is neat that we can 
model a wide range of effects using only three types of 
constraints. 

We now provide exact mathematical expressions for 
these thr  typ fee es o  constraints: 

ሻܠଵ,ሺ,ሻሺܥ          ൌ หݔ െ หݔ െ ݈ 
ሻܠଶ,ሺ,,ሻሺܥ             ൌ  cosିଵ൫݀ · ݀൯ െ  ߛ
ሻܠଷ,ሺ,,,ሻሺܥ           ൌ  cosିଵ൫݊ · ݊൯ െ  ,ߠ

 

 



where ݀ ൌ ݔ െ ݔ|ݔ െ |ݔ   a d݊ ൌ ݀ ൈ ݀ห݀ ൈ ݀ห
n  . 

 
For a given simplicial complex there will be many 

such constraints which have to be satisfied at the same 
time. 

 

 
Figure 8: Three types of constraints for 1, 2 and 3-

simplices. 

Besides the three deformation constraints Nucleus 
also includes the following types of constraints (the list 
is growing and is not complete): 

 
• Air model using drag and lift and a wind 

direction. 
• Air pressure model for closed and non-closed 

meshes. 
• Rigid Body constraint. 
• Collisions (see Section 7) 
• Point to surface constraint. 
• Incompressible constraint for particles. 
 
We can group all o straints in a vector of 

size m: 
f these con۱ሺܠሻ ൌ 0. 

 
This gives rise to a single non-linear system of 

equations for the change in velocity ∆۱ :ܞሺܠ  ܞ݄  ሻܞ∆݄ ൌ  0.  

 
Once the velocity change has been computed we 

can update the positio cit manner: ns in an expli
ܞ  ൌ ܞ  ܠ  .ܞ∆ ൌ ܠ     .ܞ݄

 

The big challenge is how to solve this highly 
nonlinear constraint equation. An idea we tried and 
was pursued independently in [10] is to linearize the 
equation as follows: ۱ሺܠ  ܞ݄ ܞ∆ሻ݄ܞ ൌ  0.  ሻ  ܠ۱ሺ  ݄

This results in a 3ܰ rix equation: 
 ൈ ݉ matݑܣ ൌ ܾ.  

 
The matrix is in general not square so a solution has 

to be found in the least squares sense. One such 
ique is to solve: techn

ݒ்ܣܣ  ൌ ܾ 
 

first and then to set 
ݑ  ൌ  .ݒ்ܣ
 
Alternatively one can use methods like LSQR or 

CGLS which require a black box routine that compute 
both the matrix multiply and its transpose. This 
technique works well as long as the constraints are 
close to linear which is true for small time steps. When 
the linear approximation is poor this procedure can 
actually make things worse by returning a solution that 
is far from the non-linear one resulting in instabilities. 

Because of these problems we decided to solve the 
constraints in a sequential manner one at a time in a 
Gauss-Seidel manner [14]. For each constraint we do a 
line search a constraint: long a direction d to satisfy the ݂ሺߙሻ ൌ  ܿሺܠ  ܞ݄  ሻ܌ߙ ൌ 0.  

 
The search direction is chosen to be the gradient of 

the constraint. In practice this gradient can be quite 
tedious to compute analytically. There are two 
alternatives: one is to use automatic differentiation and 
the other one is to consider the direction orthogonal to 
all transformations that modify the constraint as 
proposed by Bridson et al. [6]. Once a direction has 
been chosen we can solve the above equation for the 
constraint using Newton itera  starting with: tions

ߙ ൌ െ ݂ሺ0ሻ݂݀ሺ0ሻ݀ߙ
 . 
 
In fact we take only one Newton iteration per 

constraint since we have to satisfy many constraints 
simultaneously. Trying to satisfy one constraint 
accurately is pointless since other constraints might be 

1-simplex        2-simplex       3-simplex

1 3

1/2

1/3

3

1/2

12

6

6



conflicted with it. In the next section we describe a 
way to deal with this problem. 

 
6. Unified Solver: Resolving the Battle of 

the Constraints 
 
To each type of constraint we assign an importance I and an order O. The importance lets Nucleus know 

how many times the constraint will try to solve itself. 
The order determines the sequence in which the 
constraints are being called. In Figure 9 we show an 
example of such a sequence. The evaluation is from 
top to bottom one row at a time. 

 

 
Figure 9: Order of evaluation and importance of 

several constraints. 

The order of evaluation is important. We illustrate 
this with the example of an elastic band under tension 
between two bars as shown in Figure 10. If stretch is 
evaluated after the collisions then we get the results on 
the left. While if we evaluate collisions after stretch we 
get the situation depicted on the right. In general the 
latter is more desirable. However, notice how the band 
is overly stretched at the extremities near the bars. This 
is because we first attempt to solve for stretch which 
will shrink the entire band and then we resolve the 
collisions for the extremities. This is clearly not 
desirable. 

 

 
Figure 10: collisions followed by stretch (left), stretch 

followed by collisions (right). 

To resolve this problem we interleave the constraint 
evaluations as shown in Figure 11. The solver 
computes from each constraint’s importance the 
interleaving pattern and it also makes sure that all 
constraints are called in the final step. The math to do 
this is pretty straightforward and we will skip it in this 
paper. In Figure 11 the evaluation is done one column 

at a time from top to bottom as indicated by the arrow. 
In Figure 12 we show that this minimizes the order 
bias in the case of the rubber band under tension. There 
is no excessive stretching anymore at the extremities of 
the rubber band. 

 

 
Figure 11: Interleaved evaluation of the constrained 

over one time step. 

 
Figure 12: non-interleaved (left) versus interleaved 

(right). 

 
Figure 13: Custom constraints can be included in the 

Nucleus framework. 

We have designed the solver such that users of the 
Nucleus library can potentially add their own 
constraints in the framework. The core of the Nucleus 
solver is blind to the internals of each constraint. 
Nucleus only knows about the importance and order of 
each constraint. For example, assume a user of the 
library wants to insert some code after each self-
intersection call. In that case it can notify the Nucleus 
solver of the new constraint through an API and give it 
an order higher than self-intersection and same 
importance as shown in Figure 13. In the next Section 
we describe how we handle collisions in Nucleus. This 
is a very important component of the solver. 
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Figure 14: Penalty methods (left) versus space time 

collisions (right). 

 
7. Collisions 
 
We decided to present the collision handling after 

the general solver since it is quite involved and we 
didn’t want to break the flow of the narrative of the 
basic methodology. Collisions differ from the other 
constraints as they are unilateral, which means that 
they are expressed as an uality constraint:  ineq۱ሺܠሻ  0. 

 

 
For example the constraint could be a function of 

the amount of overlap between two bodies at the end of 
the time step. However, in the case of fast moving 
objects it might happen that they do not overlap at the 
end of a time step. In practice if we do not want to 
restrict the size of the time step we have to take into 
account the entire space-time motion and detect 
collisions that might occur in between the frames. 
Figure 14 illustrates the difference: a fast moving 
bullet might be in a valid state at the end of the frame 
even though it collided with an object in between. Also 
for objects that are not closed: ones that do not 
unambiguously define whether a point is inside or 
outside, this approach does not work. Therefore we 
adopt a space-time approach in the Nucleus solver. 

We will first explain collisions in a one-dimensional 
setting since we can conveniently depict the space-time 
picture in a plane. In fact solving the problem in one 
dimension is conceptually as hard as the three-
dimensional case. The difference is just in the details 
of the computations involved. 

In one dimension the particles are restricted to lie 
on a line. Consider the situation depicted in Figure 15, 
where two particles are approaching each other. Let the 
positions of the particles be denoted by a0 and b0 
before the collision and by a1 and b1 at the end of the 
frame. Then a condition for the particles to have 
collided in between t  that: he time step is

ܸ ൈ ଵܸ  ൏ 0,  

 
where 

 

ܸ ൌ  ܾ െ ܽ          ݅ ൌ 0,1. 
 
In fact the time of collision can easily be computed 

in this case from these quantities as follows: 
ݐ  ൌ  ܸܸ െ ଵܸ. 
 
Once we have the time of collision we can resolve it 

as shown in Figure 16 either in an elastic manner (left) 
or in a completely inelastic manner (right) or some 
blend in between these two extremes. That is how we 
solve the one-dimensional problem 

 

 
Figure 15: Space-time diagram of a one-dimensional 

collision. 

In a two-dimensional plane two simplicial 
complexes collide through edge-point collisions only. 
Analogous to the one-dimensional case we compute 
the signed area of the triangle formed by the edge and 
the point at the start and at the end of the frame. If the 
sign of these areas is different then we know that the 
line defining the edge and the point have a collision 
somewhere in between as shown in Figure 17. 
However, this condition does not guarantee that the 
point actually hits the edge. This is only a necessary 
condition for a collision to occur. In this case we have 
to solve a quadratic equation in the time t to find the 
point of collision. Subsequently we move the point and 
edge to the time of collision and test whether the point 
is on the edge (similarly to Bridson et al. [6]). 

 

 
Figure 16: Elastic versus inelastic collision. 
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Figure 17: space-time collision of a point and an edge 

in two-dimensions. 

In three-dimensions two simplicial complexes’ 
simplices can only collide through point-triangle and 
edge-edge pairs. In both cases we can construct a 
tetrahedron formed by the pair as shown in Figure 18. 
These tetrahedra have a signed volume in three 
dimensions and similarly to the one-dimensional and 
two-dimensional cases we can check the signs of these 
volumes at the beginning and at the end of the time 
step. Of course we also check whether there is an 
actual intersection or not at the time of collision. In this 
case we have to solve a cubic polynomial equation to 
get the ti f n rt this is the algorithm: me o collisio . In sho
 if   ܸ ൈ ଵܸ  0  stop lap at ݐ 

Find ݐ such that ௧ܸ ൌ 0 Check if primitives overIf  yes  handle collision. 
 

If we add a thickness to each point, edge and 
triangle then the situation is a little more complicated 
and we have to consider the four cases listed in Figure 
19. On the right we list the corresponding polynomial 
we have to solve to find the time of collision. This 
required us to write a routine that computes the real 
roots of a polynomial of degree up to 6. This is actually 
a lot trickier than it sounds, particularly due to 
numerical precision issues. How we dealt with these 
issues is beyond the scope of this paper. 
 

 
Figure 18: Both in the point/triangle and edge/edge 

case we can construct a tetrahedron. 

 
Figure 19: four possible collision types when thickness 

is added. 

To handle many primitives we first use a 
hierarchical bounding volume structure to rapidly cull 
pairs that do not intersect. We then perform the more 
expensive collision tests described above on the 
remaining pairs. We have experimented with many 
different bounding volume data structures and found 
that a kDOP tree performed best in practice. We also 
use a hash table data structure for unstructured 
simplicial complexes such as a particle system. This is 
because the building of the topology (not its geometry) 
of the hierarchical tree can be quite costly in practice. 

Many existing solvers resolve collisions 
sequentially as they occur in time and move the entire 
state to the time of collision. This is clearly the most 
accurate way to proceed. However, it can be 
computationally expensive in the case of many 
collision events. Worse it can suffer from lockups. For 
example, consider the case of a bouncing ball with a 
restitution coefficient smaller than one. It is a well 
known fact that the ball will bounce an infinite amount 
of times in a finite amount of time. Therefore an event 
based system would never halt in this case. 

For these reasons we decided to adopt a fixed time 
step approach. We resolve the collisions sequentially 
but do not move the entire system to the time of 
collision. The sequence stops when all collisions are 
resolved or when a maximum number of iterations has 
been reached. Figure 20 shows a sequence of collisions 
for the case of three particles colliding in one-
dimension. 

We emphasize that our approach is an 
approximation. But perceptually it can be argued that it 
is hard to distinguish between a correct simulation and 
an approximate one in the case of many collisions. On 
the other hand our approach is more stable and does 
not suffer from lockup problems like event based 
approaches. 
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Figure 20: collision of three particles in one-dimension 

using a fixed time step approach. 

 
Figure 21: Snapshot of one of our demo programs. 

 
8. Results 
 
Nucleus was first released in Autodesk™ MAYA 

8.5. It has been used in numerous productions by our 
customers. The capabilities of Nucleus are best 
demonstrated in animations and live demos. Most of 
the demos were derived from early prototypes but they 
use the same Nucleus library as MAYA does. Figure 
21 shows a snapshot of one of our demos which runs in 
real-time and tests the various collisions between point, 
edges and triangles. Many demos and animations were 
shown by the author during his keynote talk at the 
IEEE CAD/Graphics International Conference 2009 in 
Yellow Mountain City in China. 

Figure 22 shows a sequence of an animation of a 
Ballerina that we created with nCloth. The Ballerina is 
animated using key-frames and collides with the dress. 
The Ballerina’s geometry changes quite a lot from 
frame to frame and our space-time approach turned out 
to be crucial to resolve the collisions. Figure 23 shows 
a sequence of a liquid simulation using nParticles. 

My co-worker Duncan Brinsmead has a web blog 
with many interesting examples and unusual 
applications of Nucleus [7]. For example, he created a 
simulation of a slinky using nCloth. The shear 
constraint was particularly useful in this case to keep 
the slinky rigid as shown in Figure 24.  

 
 
 

 
Figure 22: Animated sequence of a ballerina. 

 

 
Figure 23: Simulation of a liquid using nParticles. 

 

 
Figure 24: Still from an animation of a slinky using 

nCloth. 

9. Conclusions and Future Work 
 
In this paper we have given an overview of the new 

Nucleus solver library available in our Autodesk™ 
MAYA software. Currently only the nCloth and 
nParticle modules are exposed. However, the Nucleus 
solver also handles curve-like objects and other effects 
not yet exposed in Autodesk™ MAYA which were 
shown in our demos. In the future we intend to add 
more functionality to the solver such as true rigid 
bodies, better liquids, hair and other effects. 



We are also exploring other uses of the Nucleus 
library outside of the field of computer graphics. 
Currently we are looking at applications in architecture 
[4]. We have recently obtained promising results in the 
area of panelization modeling which currently is a 
costly procedure. 

Another very important area of future research is 
how to improve the control of Nucleus. Perhaps some 
controls can be built in as constraints. In fact we have 
one built in already which loosely constrains the cloth 
to a goal mesh animated by a user. Currently there are 
a lot of parameters in Nucleus and we would like to 
make the user-interface more user-friendly with more 
intuitive controls. 

Also we are investigating ways to make the solver 
more multi-thread friendly. Some parts of the solver 
are already multi-threaded but the order dependent way 
in which we solve the constraints limits a global 
parallelization of the Nucleus solver. 

We are currently working on all of the issues. 
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