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Abstract 
We report qualitative findings from interviews and 

observations detailing how professionals generate and 
evaluate design ideas using design optimization tools. We 
interviewed 18 architects and manufacturing design 
professionals. We frame our findings using the Geneplore 
model of creative cognition and classify examples of 
ideation and abstract design thinking arising from 
optimization workflows. Contrary to our expectations, we 
found that the computed optimum was often used as the 
starting point for design exploration, not the end product. 
We also found that parametric models, plus their associated 
parameters and simulations, serve as an alternate, highly 
valued form of design documentation distinct from 
engineering schematics. 

1. INTRODUCTION 
We focus our research on optimization in a professional 

design practice. We select this focus because computational 
power that was once restricted to large government entities 
has become increasingly accessible to private entities 
(Thibodeau, 2013). Meanwhile, the professional use of 
parametric modeling has provided adaptive structures 
against which iterative simulations can be run. We’ve 
observed that computationally intense, heuristic searches of 
design spaces are becoming more commonplace in 
professional practice than in the past.  

The proprietary nature of professional design processes, 
and their resulting designs, led us to choose an ethnographic 
approach to our research. While the use of simulation tools 
has begun to be systematically documented in the literature 

(e.g. Tsigkari et al. 2013), to our knowledge there are no 
published, comparative accounts of goal-driven design and 
optimization used professionally. The qualitative findings 
reported here begin to fill this gap.  

As software designers and high-performance computing 
experts, the high-level objective of our research is to expose 
the opportunity for new or improved computing 
architectures and user interfaces for generating, exploring 
and describing design spaces via optimization. In this study 
we advance toward that objective by first detailing how 
professional designers use design optimization to ideate – 
i.e., to generate and then explore solutions, to discover new 
and unexpected ideas, and to focus or expand their 
understanding through data visualization. We then 
articulate the multiple levels of abstraction engendered by 
optimization workflows, including: problem definition, 
evaluation, coding and documentation. 

2. DESIGN OPTIMIZATION 
Design optimization tools are creation tools that use 

parametric modeling, performance simulation and 
mathematical optimization to systematically generate and 
evaluate design alternatives (Holtzer et al. 2007). Design 
optimization, also known as design optioneering (Gerber et 
al. 2012) and computational design (Arieff 2013), is a 
departure from traditional architecture and engineering 
practice. Typically, architects generate a relatively small set 
of design alternatives that represent specific points in a 
multi-dimensional design space (Flager and Haymaker 
2007). In architecture, this small set of design alternatives 
may be communicated in the form of two or three laser 
physical cut scale models or a few dozen digital photo-
realistic visualizations.  Even with the support of state-of-
the-art computer-aided design tools (CAD), individual 
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designs are iterated relatively slowly and with considerable 
design effort. (Ibid.) 

Conversely, architects and engineers using design 
optimization practices generate orders of magnitude more 
design alternatives by specifying design objectives in the 
form of design parameters and parameter ranges (Tsigkari 
et al. 2013). They use stochastic search methods, such as 
genetic algorithms, to automatically and iteratively compute 
large sets of design alternatives (Holzer et al. 2007). The 
designs that best fit the architects or engineer’s predefined 
acceptance criteria survive multiple generations to spawn 
successive generations of unique, new designs.  

Contrasting with traditional design practices, optimized 
designs are computed parametrically and bred 
algorithmically. The numerous design alternatives that are 
produced are often represented by a multi-dimensional plot 
of solutions and might be coupled with a matrix of 
thumbnails of rendered designs, as in Figure 1. Researchers 
investigating the approach argue that design optimization 
enables designers to “more efficiently, and with more 
certainty, explore complex and tightly coupled design 
solution spaces” (Ibid.) than traditional design practices. 

 
Figure 1. Sample Design Optioneering Results from (Gerber et al 2012). 

2.1. Design Optimization as Creativity Support  
Design optimization tools are an under-researched class 

of creativity support tools. Professional engineers and 

architects perform what we dub constrained creativity: their 
creative ideas must perform an intended function, and 
satisfy specific performance criteria (Shah et al. 2003). 
These professionals concern themselves with how to 
generate and explore ideas that are optimized against 
multiple, competing objectives, variables or constraints. In 
building design, for example, it is necessary to 
simultaneously consider multiple complex objectives 
including site utilization, structural design, building form, 
energy use, buildability, and operating costs.  

To the extent that design optimization tools enable users 
to be “not only more productive but also more innovative” 
(Shneiderman et al. 2006), they fall into the application 
category of creativity support tools. Creative activities that 
lead to innovation include idea generation, easy 
exploration, rapid experimentation and fortuitous 
combination. (Ibid.) Designers using design optimization 
tools combine ideas through the algorithmic generation of 
design alternatives, they experiment through adjusting 
design parameters, and they explore through examining 
data visualizations of solution sets. Optimization tools do 
not simply automate idea generation. They support the 
creative process of idea generation, exploration and 
refinement. 

2.2. Design Optimization and Creative Cognition  
Engineering and architectural design are inherently 

generative disciplines. The set of design algorithmically 
computed alternatives for any given real-world design task 
is vast. Flager et al. calculate that for the one room, steel-
frame building used in their energy and structural 
optimization study there were 55x106 possible solutions 
(Flager et al. 2009). Cognitive limitations prevent humans 
from imagining even a small fraction of the possible 
alternatives in a problem with high dimensionality and 
millions of solutions. Not even the most skilled designer 
can handle this level of mental complexity. Variable 
interactions are particularly difficult to imagine—how do 
window size, glazing type and building orientation interact 
to produce the most energy efficient building? Furthermore, 
time constraints prevent designers from exhaustively 
exploring the solution set for top performing solutions. 

In our qualitative research we observed that both 
architects and engineers explore a wide range of design 
parameters and constraints by applying iterative design 
techniques to “solve” for their designs. Geneplore is a 
heuristic model of creative cognition (Ward et al. 1996) that 
we found particularly useful in framing the design 
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processes we observed. We will briefly describe this model 
now. Figure 2 shows the basic structure of the model.  

The Geneplore model involves three fundamental 
cognitive processes: generate concepts, explore and 
interpret concepts, and evaluate the problem to focus or 
expand the concept. These processes map nicely to the 
design optimization process in architecture and engineering 
whereby designers use goals and parameters to abstract the 
design problem, then generate concepts. Together with the 
design optimization system, they explore the strengths and 
weaknesses of the candidate solutions, and then use insights 
gained from both the generation and exploration activities 
to refactor the design problem. Meanwhile, design 
constraints, such as building height, are introduced which 
reshape the problem definition and also reshape how 
concepts are interpreted.  

A key contribution of the Geneplore model is the notion 
of a preinventive structure. The term preinventive is used to 
denote a germ of an idea, a “half-baked” sketch, or a design 
hunch that may hold promise. Patterns, 3D models and 
conceptual combinations (Ibid.) that prefigure creative 
concepts are all examples of preinventive structures.  

 
Figure 2. Geneplore Model from (Ward et al. 1996). 

We acknowledge here that it is unusual to map a 
cognitive model like Geneplore onto a system model such 
as design optimization. Nevertheless, we were compelled to 
do so because we found ourselves drawing heavily on the 
Geneplore model to inform the analysis of our interview 
findings. We present our interview study and data analysis 
next. We contend that that preinventive problem statements, 
conceptual combinations and constraints are the primitives 
on which design optimization operates. We will also 
explain that idea generation, exploration, and adjusting the 
problem focus – the three pillars of Genepolore – are the 
three most common activities performed by users of design 
optimization tools.  

3. INTERVIEW STUDY 
We interviewed 18 design professionals in the fields of 

architecture (15) and manufacturing/fabrication (3). 
Interview duration ranged between 1.5 and 3 hours. The 
majority of our interviews were conducted at the 
participant’s place of work, though 5 (28%) were conducted 
over the phone with screen sharing. Interviews were 
recorded (audio only) and transcribed. Due to the 
proprietary nature of the designs produced by the 
workplaces we visited, photos were prohibited and we 
weren’t allowed to take away design artifacts. We coded the 
interviews and observations, applying a grounded theory 
approach (Strauss and Corbin 1998). Here we present a 
thick description of the workflows that professionals follow 
when conducting design optimization.  

We knew enough about design optimization tools at the 
outset of the study to reject the hypothesis that it is used 
solely to conclude the design process by selecting the 
winning design from a set of all plausible alternatives. 
Through prior contact with architects and engineers we 
learned that it was being used by many at the start of the 
design process—at a stage called design conceptualization. 
This puzzled us. How was a tool that was designed to 
computationally solve design problems being used to 
question and explore design problems? We wanted to 
understand how and why an engineering technique that 
emerged from NASA (Schmit and Thornton 1964) to 
compute the single highest-performing design for an airfoil 
was being used by architects to compute the quality of 
penthouse views in design alternatives for a building in 
Bangalore (Tsigkari et al. 2013).  

3.1. Analysis 
In the analysis below we first describe the ideation 

process we observed. We briefly detail how professional 
designers use design optimization to generate and then 
explore solutions, to discover new, and sometimes 
unexpected, ideas. We also describe how they focus or 
expand their understanding through data visualization. We 
then articulate the multiple levels of abstraction: problem 
definition, evaluation, coding and documentation. Design 
insight and improved design quality are two examples of 
the value gained from design optimization. Yet abstractions 
are also the primary source of the user experience 
challenges, such as sufficiently understanding statistical 
correlations between design variables in order to reduce or 
expand the dimensionality of the design problem. 
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3.2. Ideation 

Design ideas from architecture and engineering are the 
product of creative ideation whereby ideas are generated 
and evaluated for suitability using qualitative and 
quantitative evaluation criteria (Shah et al 2003). As 
indicated by the Geneplore model (Ward et al. 1996), there 
are two distinct activities: generation and evaluation. The 
traditional ideation process is iterative (Flager and 
Haymaker 2007). When design optimization techniques are 
applied, the design process becomes less iterative yet more 
design candidates, by several orders of magnitude, are 
produced. One participant described the difference in the 
two processes in these words:  

“The typical design workflow is to design then throw to 
the analyst. Redesign. And then keep playing catch. It’s 
inefficient. [Design optimization] captures the criteria that 
are important to you then have the cloud process all the 
permutations.” 

 
Figure 3. Uses of Design Optimization. 

  The starting point in the design optimization process 
thus shifts from specifying geometry in a CAD system:  

design → evaluate → select or redesign  

…to defining the design problem:  

define → generate + explore → select or redefine.  

Here we’ll outline the activities of generating, 
exploring, describing, and selecting solutions, as 
summarized in Figure 3. 

3.2.1. Generate Solutions  
Architects and engineers often cannot compute nor 

comprehend the effects of combining multiple variables in a 
complex system. Design optimization tools procedurally 
generate design solutions from a machine-readable 
definition of the design constraints and parameters. 
Typically, the design optimization system returns a large 
number (100s to 1000s) of design solutions. One study 
participant explained this automated idea-generating 
process thusly: 

“Good design has inspiration to it...if you have that 
vision you can encode it and parameterize it and explore it 
further. Now we have a rich flora of options.”  

Examples of designs that our participants optimized 
include high-rise buildings, hospital patient care wards, an 
engine manifold, and installation art. The elements of the 
design that were optimized include, but are not limited to: 
aesthetic form, structural form, mechanical performance, 
human performance (nurse walking distance) and building 
energy efficiency. Liters per second is an example of a 
design parameter from the engine manifold example. 
Engineering constraints are such things as “no more than 2 
bars of pressure drop.” An architectural constraint might 
be “must maintain an average of 40% natural light.”  

3.2.2. Explore Solutions 
We appropriate the term explore from the Geneplore 

model of creative cognition to describe the way users 
purposefully adjust their parameter ranges and review the 
resulting solution sets. One user referred to this as an act of 
discovery: “The key is the discovery phase. As you adjust 
ranges, you discover options you may not have expected.” 
Surprisingly to us, both architects and engineers in our 
study said that the computed optimum was often used as the 
starting point for this exploration. In one case, the 
structurally optimal alternative design for a high-rise 
building was used to seed the exploration process for its 
aesthetic design. The structural engineer from this group 
explained that “the optimum is a way to talk about form” 
indicating that the solution they chose from the set of high-
performing solutions in their structural optimization served 
as the conceptual sketch on which the aesthetic designers 
could iterate.  

3.2.3. Describe the Solution Space  
The solution space is the set of all solutions computed 

by the design optimization algorithm. We observed two 
primary ways that design optimization describes the 
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solution space for users. These are visualizations and data 
plots. Visualizations can be further classified into 
performance visualizations (a.k.a. simulations) and 
aesthetic visualizations. A heat map showing regions of 
stress on a 3D model of a metal bracket under a simulated 
load is an example of a performance visualization. Our 
study participants explained that they use visualizations to 
develop their understanding of the impact of their design 
choices on aspects of performance. In one case, a 
mechanical engineer optimizing the design of a manifold 
attributed a major design insight to a computation fluid 
dynamic visualization he reviewed:  

“[the visualization] gave us the insight to open the 
diameter… the diameter of the opening could not be 
expanded but the diameter of the shaft cold be flared to 
increase flow.” 

Aesthetic visualizations are also 3D renderings of 
design alternatives. When used by architects, these 
visualizations allow systematic exploration of building 
form. These visualizations are important since, as one 
structural engineer put it: “slight variations to form, to a 
designer’s eye, are either elegant or fat.” 

Data plots, commonly in the form of scatter plots, are 
another type of data visualization we observed being used. 
Respondents expressed a range of opinions about the utility 
of different types of plots. One study participant sung the 
praises of parallel coordinate charts while another pledged 
his allegiance to Pareto plots. A manager said this about the 
computational designers he manages and their discussions 
of different plot types: “they talk about tradeoffs in a 
spiritual way.” We suspected that different plot types 
allowed certain designers to extract more information about 
design tradeoffs more quickly than others. We theorized 
that there was an interaction between the sophistication of 
users’ statistical knowledge and the utility they assign to the 
different types of plots.  

3.2.4. Describe the Design Space  
The term design space describes the mathematical 

definition of the design. It includes the design variables, 
and constraints; the ranges or discrete values assigned to 
those variables; and any other bounding criteria that can be 
expressed mathematically. Study participants used 
statistical analyses such as correlations to examine the 
interaction between variables. They actively sought these 
statistical descriptions of the design space because 
“understanding dependencies between different systems 

[variable types] is very challenging” and because statistical 
analysis gives them insights to add or remove variables 
when warranted. For example, they remove variables found 
to be highly correlated to reduce the “dimensionality” of 
their problem space; they split variables based on variable 
sensitivities; and they adjust parameter ranges up and/or 
down to account for design tolerances. 

3.2.5. Select Solutions 
Something we found counterintuitive was that many 

participants in our study selected the highest performing 
solution from a solution set to initiate their design ideation 
process, rather than to conclude it. This remained 
befuddling until we learned that our participants were using 
computational design more frequently in the earliest, most 
conceptual phase of design than in any other phase. They 
considered the optimum to be the computational equivalent 
of a back-of-the-napkin sketch. Borrowing again from the 
Geneplore model of creative cognition, the computed 
optimum is the pre-inventive structure that seeds the 
ideation process:  “instead of starting with nothing, you 
start with something…your optimum gives you a starting 
hunch.” 

That said, it was not only the single highest solution that 
was important and useful, but often the full set of high 
performing solutions. Our study participants reported 
consulting Pareto plots iteratively in the conceptual design 
phase to rapidly identify and select “interesting” solutions. 
Pareto plots are a type of scatter plots commonly used to 
distinguish high-performing solutions in the set of all 
feasible solutions. The Pareto set is composed exclusively 
of the high performers: for any given solution in the Pareto 
set, it is impossible to increase performance along one axis 
without decreasing performance along another axis. A 
mechanical designer qualified his interest in identifying the 
highest performing designs during the conceptual design 
phase by explaining that he is looking to determine “what 
direction the performance is trending.” He iteratively 
generates high performing solutions using visualizations 
such as Pareto plots to explore how adjusting the 
parameters by hand affects the overall quality of the 
resulting solutions.  

3.3. Abstraction 
To define a design problem requires abstracting the 

problem into mathematical descriptions such that the design 
optimization tool can compute alternatives. An empirical 
study of engineers has shown that the level of abstraction 
and precision in a problem definition affects the quality and 
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quantity of ideas generated (Fricke 1999). Problems defined 
with low precision produce few and poor solutions because 
engineers fixate on concrete solutions too early. 
Conversely, too many solutions also produce poor solutions 
because managing too many solutions diminishes the 
engineers’ ability to identify, evaluate and modify the best 
solutions. Successful designers balance their search for 
solutions. (Ibid.) 

We did not evaluate the quality of design solutions our 
study participants produced by design optimization tools; 
however, our interviews with architects and engineers 
suggest that design optimization tools maximize the 
positive effects of precision in problem definition while 
minimizing the negative effect of large solution sets. 
Furthermore, we suspect that the demands of abstracting the 
problem into a precise definition, which our participants 
stress is nontrivial, improve the designers’ ability to 
evaluate solutions. We discuss multiple levels of abstraction 
in the design optimization workflow next. 

3.3.1. Problem Definition as Abstraction  
“Think about the underlying logic and how you can 

transform it.” 

Using design optimization tools necessitates abstraction. 
Users must precisely define the problem space across 
multiple dimensions. One participant succinctly 
summarized his design problem for an office tower this 
way: 

“I work to balance aesthetics and sustainability. We 
wanted a cohesive skin. [goal] The client wanted 40% 
natural light. [constraint]” 

Our participants defined between 12 and 60 design 
parameters for the range of projects they worked on. They 
explained that it was not sufficient to simply describe the 
building or object geometry in the problem definition; 
rather, they needed to extract the underlying logic of their 
design problem. They routinely need to abstract variables 
so they can “optimize things that aren’t the same” such as 
energy efficiency and structural efficiency. Designers also 
report that they often look at multiple competing criteria at 
the same time, such as daylight exposure, and view quality 
from windows in a building. Abstracting design goals and 
parameters into quantifiable representations is the first level 
of abstraction that design optimization demands from users. 

 

3.3.2. Code as Abstraction  
“You need to write the rules correctly.” 

The second level of abstraction required by design 
optimization is programming. Most, but not all, of the 
design optimization problems that our study participants 
work on require that they script algorithms to procedurally 
generate solutions. In the case of hospital design, the design 
goals and parameters interact according to a specific logic 
embedded in the optimization code, since hospital design is 
subject to rigorous building codes and regulation.  

One participant explained the challenge of converting 
building code to software code in these words:  “you need 
to write the rules correctly for what you are trying to 
check.” In one architectural case 5000 lines of code 
produced 2000 design alternatives, each satisfying rules for 
solar gain, cost, buildability and acoustics.  

When architects abstract designs into rules and make 
observations such as “you need to write the rules correctly” 
they begin to sound more like software programmers than 
architects. One of our interview participants rejected design 
optimization precisely because of this level of abstraction it 
demands. His view is that design optimization transforms 
the practice of architecture away from the “rational” or 
concrete practice of creating CAD drawings to a more 
abstract practice:  

“Revit [a CAD tool] is rational. When you’re working 
in Revit, your goal is set: I’m designing a building. I’m 
producing construction documents. In Grasshopper [a 
design optimization tool] there is no proscribed approach 
nor outcome. I can design a tree or a car.” 

This study participant asserted that when architects use 
design optimization to produce “1200 variations, you’re 
not being an architect any more. You are a computer 
programmer. A bus driver.” This comment implies that the 
level of abstraction inherent in the coding aspect of design 
optimization fundamentally alters architecture from a 
practice of documenting design into CAD, to a practice of 
abstracting rules into software.     

3.3.3. Evaluation as Abstraction  
“Then they start to push each other around.” 

Sound decisions about tradeoffs in multi-objective 
design problems require sophisticated statistical thinking. 
As we stated earlier, even skilled designers often struggle to 
comprehend the effects of combining multiple variables in a 
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complex system. A particularly germane example from our 
data came from an interview with a structural engineer. He 
told us of output from design optimization that combined 
structural strategies in an interesting and unexpected 
configuration. Design optimization had produced a design 
wherein the widest section of the building he was designing 
had a tied fan structure with cross-bearings tapering as they 
went up, while two narrower sections used two different 
structural strategies: suspension and truss. When we asked 
for his reaction to the configuration he replied: “you have 
these strategies in your mind, but you may not know how 
they will interact.” The abstractions in this example are the 
structural strategies. The design optimization system has no 
formal definition of a tied fan, suspension or truss. It simply 
computes the thickness and position of the beams. The 
designer abstracts what he sees in the output into structural 
strategies.  

Our transcript from an interview with an architect/artist 
who designs and fabricates installation art is replete with 
abstract criteria that he used to evaluate the results from his 
optimizations. Examples of these criteria are: minimal 
surfaces, the absence of double curvature, and 
“mathematical purity”. To visualize the design optimization 
process he output the calculations directly to a 3D model 
and watched the model transform as the problem was being 
solved. At the start, the design was very angular but once 
the design optimization ran, the geometric elements started 
to “push each other around to find equilibrium.”  

These two examples imply that evaluations may be 
concrete, such as the percent of solutions that meet or 
exceed 40% natural light, or they may be abstract, such as a 
structural engineering strategy or a mathematical purity. 

3.3.4. Documentation as Abstraction –  
“Not a perfect translation of genotype to phenotype.” 

We were surprised to learn the extent to which 
architects abstracted their designs. One participant stressed 
that the “parameters need to tell the design story.” An 
architectural firm we interviewed described the process by 
which they encoded the expression of architectural forms 
and performance parameters into an “architectural 
genome.” Another architectural firm referred to the “master 
files” that they produced using their design optimization 
practice. These types of files, genomes and master files, are 
the symbolic description of the design problem. These files 
are the design story as told by the parameters. This type of 
documentation is a fundamental departure from the set of 

elevations and floor plans in traditional design. The obvious 
analogy, used by our participants, is that the master file is a 
genotype and the set of CAD drawings is a phenotype. One 
study participant cautioned us that there is “not a perfect 
translation of genotype to phenotype” implying that design 
optimization does not replace the expertise of the architects.  

Design optimization requires that professionals abstract 
the design problem far more systematically and 
comprehensively than in traditional, iterative design 
processes. As a result of this obligatory abstraction, design 
optimization has enabled design professionals to generate 
and explore more mathematically complex design 
alternatives than they would otherwise. This process of 
ideation through abstraction appears to be the creative 
engine of design optimization. That said, abstract thinking 
is difficult even for trained professionals. One participant 
reported that plots of solution sets that are output from 
design optimization are more difficult for him to evaluate 
than CAD models: “A [CAD model] is something you can 
respond to…I like that. I don’t like that.” This was echoed 
by another respondent: 

“the usability of the output is not there… even the visual 
examples are hard to digest for us, much less for the clients 
who don’t have the expertise.” 

We were surprised to find this pattern in our interviews: 
user interfaces for data exploration in design optimization 
produce a poor user experience. This finding led us to 
wonder what attributes of these plots contributed to the 
poor user experience. At a cognitive level, we also wanted 
to learn how architects and engineers conceptualize the 
statistical analyses in design optimization, yet we have no 
data in our interviews on this topic. In a future study we 
plan to develop a framework describing how architects and 
engineers use data visualizations and apply that to prototype 
user interfaces for exploring solution spaces.  

4. CONCLUSION 
This research describes the use of design optimization 

tools across multiple professional disciplines including 
architecture and engineering. It leverages a creative 
cognition model of ideation (Ward et al 1996) to frame the 
activities we observed, including: generating design 
solutions, evaluating design solutions and describing both 
the problem and solution space. It examines an 
understudied creativity support tool, design optimization, 
and it articulates the role ideation and abstraction play in 
design optimization. One key finding is that that 
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professionals use design optimization to gain understanding 
about the design space, not simply to generate the highest 
performing solution. Professionals reported that the 
computed optimum was often used as the starting point for 
design exploration, not the end product. A second key 
finding is that in some design organizations parametric 
models plus their associated parameters and simulations are 
serving as an alternate, highly valued form of design 
documentation distinct from engineering schematics. Much 
like a genome encodes a genotype, a parametric model and 
associated simulations encodes the expression of form and 
performance across any given set of parameters. The 
parameters tell the design story. 

A next step for our research is to develop user interface 
design principles and prototypes that remove abstraction 
between solution sets and individual design solutions. User 
interfaces should enable users to easily pivot between 
exploring a solution set and examining a specific solution. 
They should also map decision-making criteria, such as 
parameter values and variable interactions, directly onto 3D 
models of individual designs. For any given design there 
are numerous nearby variations that are generated by 
incrementing up or down a variable range. We are 
exploring various user interfaces to present the detail of 
individual solutions while preserving the context of nearby 
solutions.  

There are two distinct but related reasons why design 
optimization is important to the research community. First, 
this class of tool suffers from poor user experience (Maile 
2007). Our professional users reported this in interviews, 
and expert academic users report “the lack of user-friendly, 
mature and comprehensive user interfaces limits the usage 
in practice.” (Ibid.) Poor user experience is due in part from 
a dearth of user experience research in the field of design 
optimization (Flager and Haymaker 2007). With this study, 
we hope to ameliorate the lack of research in this area. 

Secondly, this research is important because users of 
design optimization are making buildings more structurally 
sound with less building material, they are making 
automobile engines more efficient, and they are improving 
the quality of care in hospitals by making them more 
comfortable places to work. Design optimization tools are 
used for sustainable design, yet are built on stratified layers 
of abstraction that we believe place considerable cognitive 
demands on the user. Abstractions exist when the design 
problems are defined, coded, and interpreted through data 

visualizations. Our findings suggest that the abstractions 
inherent in the workflows may conceptually distance 
designers from their designs, or lead them to make 
important design decisions based on incomplete 
information. This research may give tool developers, 
ourselves included, insight into how to amplify, focus 
and/or minimize these multiple levels of abstraction when 
designing optimization software. 
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