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Occupational exposure is typically assessed by measuring forces and body

postures to infer muscular loading. Better understanding of workplace muscle

activity levels would aid in indicating which muscles may be at risk for over-

exertion and injury. However, electromyography collection in the workplace is

often not practical. Therefore, a set of equations was developed and validated

using data from two separate days to predict forearm muscle activity

(involving six wrist and finger muscles) from grip force and posture of the wrist

(flexed, neutral and extended) and forearm (pronated, neutral, supinated). The

error in predicting activation levels of each forearm muscle across the range of

grip forces, using the first day data (root mean square error; RMSEmodel),

ranged from 8.9% maximal voluntary electrical activation (MVE) (flexor

carpi radialis) to 11% MVE (extensor digitorum communis). Grip force was

the main contributor to predicting muscle activity levels, explaining over 70%

of the variance in flexor activation levels and up to 60% in extensor activation

levels, respectively. Inclusion of gender as a variable in the model improved

estimates of flexor but not extensor activity. While posture itself explained

minimal variance in activation without grip force (510% MVE), wrist and

forearm posture were required (with grip force) to explain over 70% of the

variance of all six muscles. The validation process indicated good day-to-day

reliability of each equation, with similar error for flexor muscle models but

slightly higher error in the extensor models when predicting activity levels

for the second day of data (RMSEvalid ranging from 8.9% to 12.7% MVE).

Detailed error analysis during validation revealed that inclusion of posture in

the model effectively decreased error at grip forces above 25% maximum, but

was detrimental at very low grip forces. This study presents a potential new

tool to estimate forearm muscle loading in the workplace using grip force and

posture, as a surrogate to use of a complex biomechanical model.
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1. Introduction

Epidemiological evidence has indicated a strong association between upper extremity

musculoskeletal disorders, such as tendonitis and carpal tunnel syndrome, and jobs

combining forceful grip exertions and deviated wrist postures (Armstrong et al. 1987).

Consequently, a variety of observational, subjective and direct measurement methods

have been developed to evaluate exposure to such risk factors (Wells et al. 1997, Li and

Buckle 1999). However, these methods typically characterize external hand and finger

forces without estimating muscular (internal) loads, thus limiting exposure assessment.

More detailed information linking internal and external loads would improve under-

standing of how job task characteristics contribute to the risk of injury.

Electromyography (EMG) provides a physiological method of assessing muscle use

and the magnitude of muscular loading and is directly related to muscular effort (Hägg

et al. 2000). The correlation between EMG and force has enabled the development of

mathematical relationships that predict grip force exertion using EMG (Armstrong et al.

1979, Duque et al. 1995, Claudon 1998, 2003), with recent efforts examining the effects

of muscle selection (Hoozemans and van Dieën 2005, Keir and Mogk, 2005). While a

physiologically based estimate of internal exposure is valuable for task analysis, EMG

collection in the workplace is not always practical or feasible and is often limited to a

single ‘representative’ muscle or a few select muscles. Regression modelling has been used

successfully to estimate spinal loading (Fathallah et al. 1999) and more recently to predict

shoulder muscle activity (Laursen et al. 2003). A similar approach may provide a

practical tool to predict forearm muscle activity during gripping and may benefit

ergonomists by suggesting muscles at risk during work tasks. The purpose of this study

was to predict activity levels for six forearm muscles using grip force and posture, without

the use of an elaborate biomechanical model.

2. Methods

The data used in this study were collected previously and described fully by Mogk and

Keir (2003a); thus only an overview is provided here. Maximum grip force (Gripmax)

was determined for ten healthy volunteers (five males and five females) in a mid-prone

forearm and neutral wrist posture using a grip dynamometer (MIE Medical Research

Ltd., Leeds, UK). Participants then performed exertions at five force levels (5, 50, 70

and 100% Gripmax and 50 N) using the grip dynamometer (grip span of 5 cm) in each

combination (nine in total) of three forearm postures (full pronation, neutral/

mid-pronation and full supination) and three wrist postures (458 extension, neutral

and 458 flexion). Participants were seated upright with their right forearm resting on an

adjustable horizontal platform, with the wrist, hand and dynamometer not supported.

Surface EMG was recorded from six forearm muscles: flexor carpi radialis (FCR),

flexor carpi ulnaris (FCU), flexor digitorum superficialis (FDS), extensor carpi radialis,

extensor carpi ulnaris (ECU), and extensor digitorum communis (EDC). EMG signals

were normalized to the maximal voluntary electrical activation (MVE) after removal of

signal bias (determined from a ‘quiet’ trial). Each trial lasted 10 s, during which

the participant held the dynamometer while exerting minimal force (‘baseline’), then

ramped up to the target force level and held this for 3 s before returning to baseline.

The grip dynamometer was zeroed (reset) at the baseline level with the participant

holding it loosely (exerting approximately 10 N) in the desired posture; hence, baseline

data corresponds to a force level 0% Gripmax. Calibration and experimental trials were
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performed on each of 2 d (‘day 1’ and ‘day 2’), creating two datasets each comprising a

total of 900 data points. Grip force and average muscle activation levels were

normalized to Gripmax and MVE values, respectively. It was decided a priori that ‘day

1’ data would be used to develop the equations and ‘day 2’ data would be used for

validation.

2.1. Model (equation) development

Equations were developed to predict average EMG (AEMG) for each of the six forearm

muscles from grip force and posture data (day 1) using forward stepwise regression

analyses (STATISTICA v6.0; StatSoft Inc., Tulsa, OK, USA). AEMG was the dependent

variable (in %MVE) and was predicted by combinations of grip force and posture.

Subsets of independent variables were systematically selected and included in each model

if their coefficients were significant at a level of p5 0.05. Analyses included linear,

factorial and polynomial regressions to determine which mathematical arrangement was

the best fit to the data and minimized prediction error. All models included the AEMG

and measured grip force data from each of the five force exertions (5, 50, 70 and 100%

Gripmax, plus the 50 N trial (with the 50 N converted into a relative force level)), in each

combination of wrist and forearm posture (450 data points). Equations were developed

both with and without baseline data (0% Gripmax). The muscle activity prior to each

exertion was used to calculate a mean posture-specific baseline activation level, since

baseline activity did not vary with the target force to be exerted (Mogk and Keir 2003a).

This effectively reduced baseline data from 450 to 90 data points, resulting in a 540 point

dataset for equations developed using baseline data and a 450 point dataset for equations

without baseline data.

Equations to predict the AEMG activity of each forearm muscle were developed using

posture alone, grip force alone and grip force with each combination of posture variables.

Forearm posture was input nominally using dummy variables. Wrist posture was input

into each model in two formats, separately: 1) as nominal data using dummy variables;

or 2) as measured wrist angle (8). Equations were developed both with and without

gender as a variable.

The accuracy with which each model predicted muscle activity was judged on goodness

of fit (adjusted r2model) and overall error magnitude. Root mean square error

(RMSEmodel) and mean absolute difference (MADmodel) were calculated over the full

range of grip forces for each model (expressed as %MVE). The error measures represent

the residual difference between observed and predicted AEMG values.

2.2. Model (equation) validation

All models were validated by inputting day 2 data into the day 1 equations. As with

equation development, explained variance (r2valid), RMSEvalid and MADvalid between

observed and predicted values were used to evaluate how well day 2 AEMG was

predicted over the full range of grip forces. Additionally, six specific ranges of grip force

were examined (0%, 5%, 50 N, 25–50%, forces �50% and forces 450% Gripmax) to

determine whether muscle activations were predicted equally well throughout the full

range of forces. The 50 N trials were examined separately since they represented a relative

target force that varied with individual grip strength from 8.8% to 24.2% Gripmax. The

25–50% Gripmax range incorporated all exertions effectively greater than 50 N but less

than or equal to 50%.
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3. Results

3.1. Equations (model development)

The inclusion of baseline data (0% Gripmax) in models developed using grip force and

posture (wrist and forearm) resulted in overall RMSEmodel values below 10.5% MVE for

all muscles. However, detailed error analysis revealed a large number of negative muscle

activity predictions at ‘zero’ grip force, thus prompting the decision to present only

equations developed without baseline data. The general mathematical form for predicting

the activity of each muscle is found in equation 1. Although second order models pro-

vided only minimal improvement over factorial and simple linear regression for the flexor

muscle models, the r2model and RMSEmodel for the extensor muscles were improved by as

much as 6.5% and 1.0%, respectively.

AEMGi ¼ ða1 � GFÞ þ ðb1 � GF2Þ þ ða2 �WExÞ þ ða3 �WFlÞ þ ða4 � FAPrÞ
þ ða5 � FASuÞ þ ða6 � GÞ þ c ð1Þ

where AEMGi is average muscle activation (in %MVE) for each muscle (i ranging from

1 to 6); GF is grip force (in %Gripmax); WEx is wrist extension and WFl is wrist flexion

with a value of 1 (otherwise, 0 indicates neutral wrist posture); FAPr is pronation and

FASu is supination of the forearm with a value of 1 (otherwise, 0 indicates neutral/

mid-pronation); G is gender (with male¼ 0 and female¼ 1); ai and bi represent first and

second order coefficients, respectively; c is a constant.

A list of the coefficients and error terms for each equation is found in table 1. The GF2

coefficient became non-significant in flexor muscle models once wrist and forearm posture

(or wrist posture alone) were included with grip force (table 1). This was only observed

when gender was added to flexor muscle equations. Although coefficients were included if

significant at p5 0.05, most were significant at p5 0.001.

3.2. Contributions of model components

Gender alone did not explain any of the variance (0%) in muscle activation levels.

However, when included with grip force, gender improved the r2model and RMSEmodel for

the flexor muscle models by as much as 3.8% and 0.8%, respectively, but added nothing

to extensor muscle models. Posture (wrist and/or forearm posture) alone did not predict

muscle activity well, explaining only 0–9% of the muscle activity variance. As seen in

table 1, grip force alone explained over 70% of the variance for all flexor muscle models,

but less than 60% for the extensor muscle models, with RMSEmodel values ranging from

9.7% for FCR (MADmodel¼ 7.4%) to 13.4% for EDC (MADmodel¼ 9.8%). Compared

to grip force alone, adding wrist posture improved r2model and RMSEmodel by as much as

12.5% and 2.1%, respectively. Use of the measured wrist angle (8) resulted in slightly

weaker models than the nominal form (using dummy categorical variables), thus the

nominal form was used. Forearm posture had little effect on predicting the activity of

each muscle, with the exception of ECU, which improved r2model by 10.3% and

RMSEmodel by 1.8%. When combined with grip force, the inclusion of both wrist

and forearm posture improved the r2model of all models to at least 70% and reduced

RMSEmodel by 0.7–2.6% MVE (table 1). All muscles were predicted within 11% MVE

(RMSEmodel) over the full range of grip forces.
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3.3. Model validation

Day 2 flexor muscle activity was predicted marginally better than day 1 activity, while day

2 extensor activity was predicted marginally less well than day 1 (table 1). Evaluation of

the models over specific ranges of grip force found that the error increased as grip force

increased (as seen moving from left to right in table 2, which shows the validation errors

when evaluated within the various grip force ranges). Limiting validation input to forces

less than or equal to 50% Gripmax revealed RMSE to be reduced by as much as 2.6%

from the overall full-range RMSEvalid for the same muscle. Further partitioning of input

forces below 50% revealed that only those forces exerted during the 5% Gripmax and

50 N trials had errors lower than overall RMSEvalid. The RMSE of predicted AEMG for

grip forces greater than 50 N but lower than 50% (effectively 25–50% Gripmax) was up to

5.1% higher than the full-range RMSEvalid for predicted AEMG grip force alone and up

to 3.5% higher for the model including posture (grip force þ posture) (table 2). For grip

forces greater than 50%, error in predicting AEMG was up to 4.0%MVE larger than for

the prediction over the entire range of forces. Including gender in the flexor muscle

models (FCR, FCU and FDS) tended to improve muscle activity estimates for forces

greater than 50% Gripmax, but increased error slightly for 5% grip exertions.

4. Discussion

The equations developed in this study predicted the activity of six forearm muscles to

within 11% (MVE) error and 70% explained variance using grip force with wrist and

forearm posture. Inclusion of gender as a predictor variable improved estimates of flexor

but not extensor muscle activity, resulting in linear models for flexor muscles once wrist

posture was added. While grip force alone produced r2model values greater than 70% for

flexor muscles and up to 60% for extensor muscles, posture data alone was a poor

predictor of muscle activity (r25 10%). When input along with grip force, wrist posture

improved r2model as much as 14% and decreased the overall RMSEmodel by 2% MVE.

Validation analysis of specific grip force ranges indicated that the greatest accuracy in

predicting muscle activations was at lower grip forces (below 50% Gripmax). Overall,

these findings suggest that regression modelling can be used to estimate subject-

independent forearm muscle loading patterns during isometric gripping tasks.

As expected, regression equations developed using the full complement of inputs

generated the most accurate estimates of activity for each muscle. Interestingly, gender

improved flexor muscle equations, despite non-statistical differences in either relative grip

force or corresponding muscle activation between males and females (Mogk and Keir

2003a). As seen in the overall error estimates (r2model and RMSEmodel) shown in table 1,

the activity of each flexor muscle was more strongly related to grip force than the activity

of the extensors, as shown previously (Keir and Mogk 2005). As reflected by the sign of

individual equation coefficients, muscle activations decreased with wrist extension and

increased with flexion, relative to neutral wrist posture. Interestingly, nominal wrist

posture resulted in lower error for estimated muscle activity than measured wrist angles.

While this may reflect low wrist angle variability in the study, this simplification indicates

the potential utility of a posture matching approach in place of measurement with wrist

goniometers. Inclusion of forearm posture made little improvement in the model over

grip force alone, but enabled the prediction of gravity-based increases in flexor and

extensor activity associated with maintaining supinated and pronated postures,

respectively.
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Inclusion of all available data was not always beneficial. Although inclusion of baseline

(0% Gripmax) data reduced the overall RMSEmodel for each muscle to below 10.5%

MVE, this was only true for grip forces below 5% Gripmax, with an increase in error for

all other force levels. Previous studies have suggested that incorporating baseline data

improved estimates of muscle force (Buchanan et al. 1993) and grip force (Keir and Mogk

2005). In the current study, inclusion of the baseline AEMG during model development

led to two issues. First, equations predicted negative activity for all six muscles if grip

force was set to zero and the wrist was in extension, which is not physiologically possible.

Second, baseline activity was always predicted to increase from extension to flexion for all

six muscles, which is contrary to the observed extensor activation patterns in pronation

(Mogk and Keir 2003a). These factors led to the exclusion of baseline data from all

models and greatly reduced predictions of negative muscle activity.

The validation process used could be described as an examination of day-to-day

reliability, with additional inspection of specific ranges of grip force. In general, muscle

activity for day 2 data was predicted with similar or better accuracy than the day 1 data,

from which the equations were developed (table 1). While the error for forces below 50%

Gripmax was lower than the whole range RMSEvalid, further analysis revealed this to

be true only for forces less than 50 N (below 25% Gripmax for all participants) (table 2).

The error associated with muscle activity predictions for grip forces between 25–50%

Gripmax was slightly larger (1–5%) than overall RMSEvalid, and was at least partially due

to increased error in trials with the wrist flexed. The increased error found in flexed

postures is likely explained by a previous finding by the authors of equal or greater

magnitude of EMG in spite of decreased grip force (Mogk and Keir 2003a). The

benefits of including posture as an input variable were most evident with grip forces

above 25% Gripmax, while inclusion of posture was actually detrimental for activity

related to forces of 5% Gripmax and below (table 2). The differences in error noted

between postures were likely influenced by biases introduced by the need to overcome

passive muscle forces (Keir et al. 1996) and antagonist co-contraction, and the need to

work against gravity (e.g. for extensor muscles in pronation). This was most evident

during low-level force exertions, during which such biases would have had their largest

relative effects.

Two other additional tests were performed to investigate the robustness of muscle

activity predictions. Similar to Lee et al. (2003), who input predicted activity levels in an

EMG-driven model, the authors first substituted predicted muscle activity levels from the

current study into established grip force equations (Keir and Mogk 2005). Predicted grip

force values based on estimated muscle activations from the current study were

consistently closer to measured grip force values than when recorded EMG data was

used, regardless of equation complexity. This process, although somewhat self-fulfilling,

does provide internal validity to both models. The second test utilized a modified version

of the ‘exertion’ rating scale used in the Strain Index (Moore and Garg 1995). Each

measured grip force level was assigned to one of five bins representing 20% increments

from 0 to 100% Gripmax. Equations were then developed to predict muscle activity levels

from these graded force levels, using the same methods described in the current study.

Greater accuracy was found using the 5-point scale than the measured grip force. This

suggests that perceived exertion scales may be used if direct force measurements are

unavailable, as it has previously been shown that grip exertions can be perceived to within

3% of their measured value (Marshall et al. 2004). This method could provide a simple

addendum to observational methods such as the Strain Index (Moore and Garg 1995) or

RULA (McAtamney and Corlett 1993).
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There are some limitations to the current study. Muscle activity predictions may differ

in more complex conditions. A recent study by Hoozemans and van Dieën (2005) indi-

cated that using a dynamic calibration process may further improve estimations, but that

use of a set grip span for all subjects would have a minimal effect when predicting grip

force from forearm EMG. In addition it should be noted that EMG crosstalk was

unlikely in the present experimental arrangement, as indicated by a previous study

examining electrode placements and spacing (Mogk and Keir 2003b).

While the current study has laid the groundwork for developing a practical method to

estimate muscle loading, other aspects must be incorporated to reflect the complexity of

hand intensive tasks, including dynamic exertions and different grip types, as well as tasks

requiring additional effort for stabilization during push/pull exertions or to counter a tool

applied torque. When combined with repetition and duration information, this approach

may be useful in determining cumulative loading of the hand and wrist. This study

represents an initial effort that has created a viable ergonomic tool to assess the potential

for muscle overload using grip force and posture, as an alternative to using a complex

biomechanical model.
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