
REAL-TIME COMPRESSION OF TIME SERIES
BUILDING PERFORMANCE DATA

Rhys Goldstein, Michael Glueck, and Azam Khan
Autodesk Research, 210 King St. East, Toronto, ON, Canada

ABSTRACT
If building performance simulations are to fully bene-
fit from increasing quantities of sensor data, subsets of
large datasets must be efficiently extracted at varying
levels of detail. A key issue with time series data is that
relevant time scales vary by orders of magnitude de-
pending on the desired analysis. To ensure that a sub-
set of a time series is available when needed at an ap-
propriate resolution, lossy compression can be applied
in real time as data is acquired. We propose an algo-
rithm that compresses a piecewise constant time series
by merging segments within a sliding time window.
This procedure tends to preserve prominent edges and
spikes. While building control system dashboards and
simulation tools often average data over fixed time
periods (e.g. hourly averages), the proposed method
achieves lower errors for the same compression ratio
and provides better support for signal processing, data
visualization, and simulation.

INTRODUCTION
The accuracy of a simulation-based building energy
analysis depends largely on whether the modeler has
convenient access to an adequate amount of suffi-
ciently detailed input data acquired under relevant con-
ditions. The critical importance of simulation input
data is leading to increasingly large datasets.
Weather data provides a good example of why large
datasets are necessary. First, weather data includes
several properties, including air temperature, humid-
ity, direct and diffuse solar irradiance, direct and dif-
fuse solar illuminance, wind velocity and direction,
among others. Barnaby and Crawley (2011) indi-
cate that this data must be collected over many years,
for numerous cities, and possibly multiple locations
within each city due to urban heat island effects. At
the same time they call for finer resolutions than the
hourly averages typically used for simulation.
An increasing amount of data is being collected and
recorded within buildings as well. The recently con-
structed Y2E2 Building at Stanford University fea-
tures 2370 HVAC system measurement points, each
sampled every minute (Kunz et al., 2009). Detailed
sensor networks like these can be used to detect prob-
lems in building control systems (Eisenhower et al.,
2010) and to improve the accuracy of building energy
models (Raftery et al., 2009).

For building performance simulations to fully bene-
fit from increasing quantities of sensor data, advanced
data management techniques may be needed to effi-
ciently extract subsets of large datasets. In the case
of time series data, relevant time scales vary by or-
ders of magnitude depending on the desired analysis.
Sub-minute data may be needed, for example, to in-
vestigate brief power quality disturbances. To study
annual trends in energy use, however, a low-resolution
version of the same time series would likely suffice.
Our interest in data compression is not aimed at reduc-
ing overall data storage requirements, as we believe
raw data should be preserved whenever possible. In-
stead, we regard compression as a means of supporting
the efficient extraction, processing, and exploration of
time series data. The idea is to apply a lossy com-
pression algorithm repeatedly to precompute and store
copies of every time series at different resolutions. If
an original time series is unnecessarily detailed for a
particular analysis, a copy at more appropriate resolu-
tion will then be readily available.
A simple method for reducing the resolution of a time
series is to average the data within consecutive time
periods of equal width. But while the resulting fixed-
width segments are common in building control sys-
tem dashboards and simulation tools, they are poor at
preserving prominent edges and spikes seen frequently
in, for instance, light or electrical data.
We present an algorithm that compresses piecewise
constant time series data by maintaining a limited
number of segments within a sliding time window of
fixed width. If the limit on the number of segments is
exceeded, then the most similar pair of adjacent seg-
ments is merged. We show how this selective merging
procedure preserves prominent edges and spikes, and
introduces smaller compression errors for the same
compression ratios than the common fixed-width ap-
proach. The algorithm can be applied in real time to
sensor data, and may also be useful for the output of
detailed, long-term simulations.
The compression algorithm is the main focus and con-
tribution of this paper. However, we also hope to in-
spire other applications of time series represented us-
ing constant-valued, variable-width segments with er-
ror values. We describe how this way of representing
building performance data improves support for signal
processing, data visualization, and simulation.

Proceedings of Building Simulation 2011:
12th Conference of International Building Performance Simulation Association, Sydney, 14-16 November.

- 1057 -

BACKGROUND
Time Series Representation
Figure 1 shows two common techniques for represent-
ing a time series, both of which involve sets of consec-
utive linear segments. The piecewise linear represen-
tation constrains the endpoints of each segment to co-
incide with those of neighboring segments (Figure 1a).
The piecewise constant representation constrains the
slope of each segment to zero, but allows discontinu-
ities between adjacent segments (Figure 1b).

(a) Piecewise linear (b) Piecewise constant

Figure 1: Time series representations

This paper focuses on the piecewise constant repre-
sentation, which we regard as the more flexible of the
two. Although the piecewise linear approach seems
appropriate for physical properties like temperature
that tend to change gradually over time, its tapered
edges can be misleading if used to represent dramatic
transitions and fluctuations commonly found in light
and electrical power data. With enough segments a
piecewise constant time series can approximate a con-
tinuous quantity, and discrete quantities like numbers
of occupants are piecewise constant by nature.
In some cases time series are represented such that all
segments must have the same width, while in other
cases the segment widths may differ. For example,
some sensors produce fixed-width segments by record-
ing values at regular time intervals. Other sensors
record a new value only when it differs from the pre-
vious by a certain minimum amount. A light sensor of
the latter type in an office environment, for example,
may record numerous segments during the day when
indoor luminance patterns change over time. At night,
when lighting conditions tend to remain constant, very
few segments would be recorded.
Time series output by simulations can also have fixed-
width or variable-width segments. Consider the simple
model below, in which T (t) and Ṫ (t) represent tem-
perature and its rate of change at time t.

Ṫ (t) = 0.5·
(

5·sin
(
π·t
12

)
− T (t)

)
T (0) = 0

The temperature is approximated by repeatedly evalu-
ating the following, with Ṫapprox being some suitable
approximation for Ṫ .

T (t+ ∆t) = T (t) + Ṫapprox·∆t

The time step ∆t is arbitrary. It is common practice
to use the same time step throughout a simulation, as

done to produce the time series with fixed-width seg-
ments shown in Figure 2a. Here Ṫapprox was obtained
with the Modified Euler method, which is described
in a similar context in dos Santos and Mendes (2004).
The approximation converges on the smooth red line
as the time step is reduced.

(a) Fixed-width segments

(b) Variable-width segments

Figure 2: Time series produced by simulation

If the state of a model changes at fixed time steps, one
is said to be using discrete time simulation. Another
option is to vary the time steps: to shorten them for im-
proved efficiency when data is changing rapidly, while
lengthening them for computational efficiency when
data is changing slowly. Figure 2b shows another time
series produced by a Modified Euler temperature sim-
ulation. In this case the segments vary in width, as
the time step was repeatedly calculated according to
the following formula. Here a, b, and c are arbitrary
constants.

∆t = max

(
a,min

(
b,

∣∣∣∣∣ c

Ṫapprox

∣∣∣∣∣
))

Variable time steps are a key feature of discrete event
simulation, an approach that is often used to integrate
models with different time advancement schemes.

Time Series Compression
Given a time series y, the task is to produce a new time
series ŷ while striving to minimize both the memory
required to store ŷ and some measure δ of the average
compression error. We measure this error over the time
period ta ≤ t < tb using (1).

δ =

√∫ tb

ta

(y(t)− ŷ(t))2dt (1)

Relevant work on time series compression can be
found in the field of data mining. Morbitzer (2003)

Proceedings of Building Simulation 2011:
12th Conference of International Building Performance Simulation Association, Sydney, 14-16 November.

- 1058 -

and others have investigated applications of data min-
ing to building performance simulation, though in this
community there has been little focus on general time
series compression techniques. Our impression is that,
if a time series of building performance data con-
tains too many segments for a particular analysis, it
is typically averaged within consecutive time periods
of equal width. This data reduction technique, which
we refer to as Fixed-Width Compression, is expressed
formally in (2).

ŷ(t) =
1

∆t
·
∫ (i+1)·∆t

i·∆t

y(τ)dτ

where i·∆t ≤ t < (i+ 1)·∆t, i ∈ N

(2)

In the data mining community there are many com-
pression methods developed for various time series
representations. Our interest is in relatively simple al-
gorithms for which y and ŷ are both piecewise constant
with variable-width segments. Lazaridis and Mehrotra
(2003) present one such technique, called Poor Man’s
Compression (PMC), which constrains the output time
series to be within an arbitrary tolerance h of the origi-
nal. The algorithm repeatedly merges the two most re-
cently acquired segments so long as |y(t)− ŷ(t)| ≤ h
remains true for all t. Choosing an appropriate value
for h may be difficult in the case of building perfor-
mance data due to the wide range of possible sensor
types and makes.
Keogh et al. (2001a) describe a method that involves
“converting the problem into a wavelet compression
problem, for which there are well known optimal so-
lutions, then converting the solution back [to a piece-
wise constant representation].” But because it operates
on only recently acquired segments, PMC seems eas-
ier to apply in real time as data is acquired.
The Sliding Window And Bottom-up method (SWAB)
from Keogh et al. (2001b) is similar to PMC in that
it operates on recently acquired segments. Instead of
merging only the two most recent segments, the al-
gorithm searches all pairs of adjacent segments ac-
quired within a sliding time window. If any pairs can
be merged without violating an arbitrary maximum er-
ror level, the pair associated with the least additional
error is merged. The selective merging procedure is
compelling and can be applied in real time. However,
SWAB operates on piecewise linear time series.

PROPOSED ALGORITHM
Overview
Our method involves the application of a compression
buffer that contains a limited number of segments and
spans a limited length of time. The algorithm is simi-
lar to SWAB in that recently acquired segments enter a
buffer where they are selectively merged with adjacent
samples. Unlike SWAB, both y and ŷ are piecewise
constant. The input time series may have fixed-width

or variable-width segments, but in either case the out-
put segments will generally vary in width.
The algorithm requires two parameters: the buffer size
m and the target resolution ∆tres. If all input seg-
ments are considerably shorter than ∆tres, then the
output segments will have an average width of approx-
imately ∆tres. The output resolution is constrained
such that there will never be more output segments
than input segments in any time window, and there will
never be more than m+1 output segments completely
contained in a time window of width m·∆tres.
Unlike many preexisting compression algorithms, ours
does not constrain the quality of the output time series.
Recall that SWAB limits the compression error asso-
ciated with each output segment, while PMC restricts
the distance between all corresponding input and out-
put segments. These quality guarantees conform with
the vision that, given an original time series, a single
compressed time series is produced and used for all
subsequent operations. Our vision is different. We in-
tend our compression algorithm to be used multiple
times with the same time series but different values of
∆tres. The result would be several archived copies
of the original time series, each at a different reso-
lution. When data is extracted for an analysis, one
selects the resolution that best balances the need for
precision with technological limitations related to pro-
cessing power or bandwidth.
For our data management strategy, it is more practi-
cal for the compression process to restrict resolution
than error. However, one must still be able to deter-
mine whether an analysis was compromised by exces-
sive data compression. We therefore formulate the al-
gorithm such that a compression error is stored with
each segment of the output time series.

Segment Merging Calculations
We store a time series as a sequence of datapoints
[ti, yi, δi], where ti is the start time of the ith segment,
yi is its value, and δi is its error value. For the ith seg-
ment to be a complete segment, the (i+ 1)th datapoint
must also be available to provide the end time ti+1.
Note that a time series can be expressed as a function:
y(t) = yi, with i chosen such that ti ≤ t < ti+1.
As mentioned, our algorithm compresses a time se-
ries by repeatedly merging adjacent segments. Merg-
ing the ith and (i+ 1)th segments means replacing the
ith and (i+ 1)th datapoints with a new one, [t̂i, ŷi, δ̂i].
This merged datapoint is given by (3) below, where
∆ti = ti+1 − ti and ρi2 = yi

2 + δi
2.

t̂i = ti

ŷi =
∆ti·yi + ∆ti+1·yi+1

∆ti + ∆ti+1

δ̂i =

√
∆ti·ρi2 + ∆ti+1·ρi+1

2

∆ti + ∆ti+1
− ŷ2

i

(3)

Proceedings of Building Simulation 2011:
12th Conference of International Building Performance Simulation Association, Sydney, 14-16 November.

- 1059 -

Figure 3: Example of real time compression. Segments shown on a blue background are in the compression buffer.
Transition A – B shows the arrival of a datapoints within the buffer’s time window, C – D illustrates the selective
merging of segments in a full buffer, and E – F shows the arrival of a datapoint beyond the end of the time window.

The compression procedure involves applying (3) to
multiple pairs of segments before deciding which pair
to merge. The chosen pair is the one that gives the
lowest cost C, which depends on both the error values
and the widths of the segments.

C = (∆ti + ∆ti+1)·δ̂i − (∆ti·δi + ∆ti+1·δi+1)

One may reduce memory requirements by excluding
δi from all datapoints in an original time series, since
there we assume δi = 0. Whenever two segments
with different values are merged, however, the result-
ing error must be recorded as it influences subsequent
merging operations. A pair of adjacent segments with
large error values is more likely to be merged than
an otherwise congruent pair with smaller error values.
It might be beneficial to assign measurement errors
or simulation-estimated uncertainty values to δi in an
original time series, but we leave that idea for future
research.

Compression Procedure
Starting with an empty compression buffer, newly ac-
quired datapoints are added in real time while ob-
serving two constraints. The first constraint is that
the number of complete segments in the compression
buffer cannot exceed m. If a new datapoint completes
the (m+1)th segment within the buffer, then two seg-
ments must be merged to bring the total back down
to m. The second constraint is that the combined
duration of all segments in the buffer cannot exceed
m·∆tres. If a new datapoint breaks this condition, one
or more of the oldest segments are released from the
buffer and become part of the output time series.

Figure 3 illustrates the procedure with a size-4 com-
pression buffer. The first datapoint is added to the
buffer at stage A. At stage B the second datapoint ar-
rives and completes the first segment. The process
continues until stage C, when the buffer gains a fifth
segment completely contained in the m·∆tres time
window. Because m = 4, a pair must now be merged.
As shown, there are four pairs of adjacent segments to
consider. In this case the third pair yields the smallest
value of C, and is therefore selected as the least costly
to merge. At stage D this pair has been merged, and
only four segments remain in the buffer.
When the next datapoint arrives at stage E, it com-
pletes a segment that extends beyond the m·∆tres
time window. In this case, in order to keep the buffer’s
combined segment width under m·∆tres, the two old-
est segments must be released. As shown in stage F,
the buffer slides forward to encompass the new data-
point. The two released segments have become part of
the output time series, and may no longer be altered.
There are two basic ways to use the algorithm to pro-
duce multiple copies of a time series at different reso-
lutions. The first option is to apply multiple compres-
sion buffers directly to the original time series with
different values of ∆tres. The second option is to
apply the algorithm once to the original time series,
then repeatedly to its own output with successively
coarser target resolutions (i.e. larger values of ∆tres).
Both strategies seem reasonable. The second option
requires less computation but increases latency, as a
segment can enter a compression buffer only after it
exits the preceding one. We used the first option for
all results shown in this paper.

Proceedings of Building Simulation 2011:
12th Conference of International Building Performance Simulation Association, Sydney, 14-16 November.

- 1060 -

Results
Qualitative Observations
Raw sensor data was acquired with a maximum sam-
ple rate of 2 Hz, where each datapoint was recorded
only if its value differed by a certain minimum amount
from that of the preceding datapoint. This produced
piecewise constant time series data with variable-
width segments.
In Figure 4, roughly two hours of light sensor data
is shown in its original form and after applying com-
pression buffers with two different target resolutions.
Clearly information is lost as the resolution decreases.
Note how the compressed segments contract in places
to better represent prominent features.

Figure 4: Light sensor data compressed with a size-12
buffer at 1- and 5-minute target resolutions

A section of the same dataset is shown expanded in
Figure 5. Four different compression schemes are ap-
plied to the time series, but the target resolution is the
same in each case. The first compressed time series is
produced with Fixed-Width Compression (FWC), the
usual means of reducing building performance data.
The remaining time series are produced with size-m
compression buffers, abbreviated CB-m.

Figure 5: Light sensor data compressed with a 1-
minute target resolution using different schemes

Looking at Figure 5, the prominent rising edge labeled
B is apparently preserved by the simple FWC algo-
rithm. This turns out to be incidental; the edge is pre-

served only because it happens to coincide with the
boundary between one fixed-width output segment and
the next. By contrast, the edge labeled D coincides
with the middle of an output segment, and is conse-
quently misrepresented in the compressed time series.
Note that these two edges and others emerge from all
three compression buffers intact.
With FWC, spikes in the original data that are nar-
rower than ∆tres are flattened and widened to some
extent. Depending on the situation, a compression
buffer may preserve such spikes. Looking again at
Figure 5, the spikes labeled C and F are considerably
flattened after passing through the size-4 compression
buffer, yet well represented when the buffer size is in-
creased to 12. This makes sense because, as the seg-
ments that compose a spike pass through a compres-
sion buffer, they will survive unaltered only if there
are other segments in the buffer that can be merged in-
stead. When the buffer size is increased to 24, spike A
is preserved as well, though this may have come at the
expense of one or two segments near spike C. Note
that spike E is essentially neglected by all four com-
pression schemes. The 1-minute target resolution may
be too coarse preserve this feature.

Analysis of Compression Ratios and Errors
From visual observations we gain an intuitive sense
that the application of a compression buffer outper-
forms FWC, and that a buffer with a maximum size of
a dozen or more segments produces better results than
a buffer limited to a few segments. To test this percep-
tion quantitatively, we applied FWC and compression
buffers of different sizes to eight different time series.
Each time series was acquired over a 4-day period by
a different sensor, and compressed with the following
target resolutions: 1, 5, 15, and 30 seconds; 1, 5, 15,
and 30 minutes; and 1 hour. We recorded the resulting
compression ratios and associated compression errors.
The compression ratio is the number of output seg-
ments divided by the number of input segments. The
compression error δ was defined in (1), but because
we store error values with each output segment, we are
able to use the more convenient expression in (4). Here
i, ti, and δi pertain to datapoints of the output time se-
ries ŷ. The input time series y is no longer needed to
compute the error.

δ =

√√√√ 1

tb − ta
·
b−1∑
i=a

(ti+1 − ti)·δi2 (4)

Figure 6 shows a scatter plot of the compression ratios
and errors obtained using data from four temperature
sensors. As expected, relatively small compression
ratios are associated with relatively high errors. For
each compression scheme (i.e. FWC, CB-4, CB-12, or
CB-24), the points in the scatter plot are quite spread
out. This indicates that the errors one encounters for
a given compression ratio vary significantly from one

Proceedings of Building Simulation 2011:
12th Conference of International Building Performance Simulation Association, Sydney, 14-16 November.

- 1061 -

Figure 6: Temperature data compression statistics.

time series to the next, even if both are collected using
the same type of sensor. Despite large deviations, the
errors produced by FWC are noticeably higher than
those produced by the compression buffers, particu-
larly as compression ratios approach 1. There also ap-
pears to be a slight tendency for compression errors to
decrease with increasing buffer size.
Because a compression buffer can transform a time
series only by merging segments, the number of seg-
ments cannot increase and the compression ratio can-
not exceed 1. Furthermore, as reflected in Figure 6, the
compression error will converge on zero as the com-
pression ratio approaches 1. With FWC, by contrast,
the number of output segments can exceed the num-
ber of input segments. Care must to taken with FWC
to avoid the case of the rightmost points of Figure 6,
where an excessively fine target resolution increases
the size of a time series and still introduces error.
For the light and electrical current data, the results for
each sensor are shown in a separate scatter plot. For
light sensor 1, in Figure 7a, the errors produced by
all three compression buffers are roughly four times
smaller than those produced by FWC over a wide
range of compression ratios. For light sensor 2, in Fig-
ure 7b, the compression buffers still appear to outper-
form FWC, but the relative difference is only appre-
ciable for compression ratios greater than 0.01.
On the right-hand side of Figure 7b, and in a few other
cases as well, the size-12 and size-24 compression
buffers yield noticeably smaller errors than the size-
4 buffer. This is consistent with our qualitative ob-
servations, as larger compression buffers appear more
likely to preserve spikes. Somewhat surprisingly, there
are many cases in which all three compression buffers
produce essentially the same error. It is possible that
while certain spikes are prominent in appearance, they
may be too small in width to have a noticeable effect
on our quantitative error measurements.

We note that for the two leftmost points of CB-24
in Figure 7b, the compression error unexpectedly in-
creases with target resolution. The reason this is pos-
sible is that, given a finer target resolution, the com-
pression buffer operates over a shorter time window
and may miss opportunities to better “distribute” the
output segments.

(a) Light sensor 1

(b) Light sensor 2

Figure 7: Light sensor data compression statistics

Proceedings of Building Simulation 2011:
12th Conference of International Building Performance Simulation Association, Sydney, 14-16 November.

- 1062 -

The electrical current sensors were set up to monitor
personal computers in an office. As shown in Figure 8,
the compression buffers again outperform FWC, par-
ticularly for compression ratios greater than 0.1.

(a) Current sensor 1

(b) Current sensor 2

Figure 8: Electrical data compression statistics

FWC has one advantage not represented in the scatter
plots: the individual segment start times ti need not be
stored in the output time series. Assuming one stores
only the value yi of each segment, and assuming all
scalar values require the same storage space, the FWC
compression ratios should all be reduced by a factor of
2. With this correction the compression buffers would
still outperform FWC for light sensor 1, but in cer-
tain other cases FWC would appear more competitive.
The assumptions that lead to this 2-fold correction are
questionable, however. We argue that each output seg-
ment should contain an error value δi, which implies
a 3:2 correction. If one were to store the minimum
and maximum input values as well, there would be less
benefit still in discarding the start times.

APPLICATIONS
Application to Signal Processing and Visualization
Our approach to time series compression supports fur-
ther signal processing and visualization in a number of
ways. First, by precomputing and storing copies of a
time series at different resolutions, one supports inter-

active graphs like that of the well known web-based
application Google Finance. With this type of visual-
ization tool, the resolution of the visible data changes
automatically as the user manipulates the time period
of interest. Second, time series with variable-width
segments may be processed with fewer computations,
as few segments are needed for relatively flat regions.
Third, the error values stored in the compressed seg-
ments provide useful information.
Here we demonstrate how a common signal process-
ing routine, a low-pass filter, can be applied to a com-
pressed time series produced by the proposed algo-
rithm. Filtering is typically formulated as a convolu-
tion using a window function. We assume that a win-
dow function f is defined only between −1 and 1, and
normalized such that

∫ 1

−1
f(x)dx = 1. With variable-

width segments, we require the corresponding cumu-
lative function F , where F (x) =

∫ x

−1
f(u)du. Below

are f and F for the Hann function, a window function
frequently used by low-pass filters.

f(x) =
1 + cos(π·x)

2
, −1 < x < 1

F (x) =
1

2
·
(

1 + x+
sin(π·x)

π

)
, −1 < x < 1

With errors values stored in the compressed segments,
we can produce not only a filtered signal z, but also
an approximation s of the signal’s variability. When z
and s are evaluated at time t, the window function is
centered on t and scaled such that its half-width in the
time domain matches the parameter d. Both z and s
are defined below, with ρi2 = yi

2 + δi
2 and ∆ρi

2 =
ρi+1

2− ρi2. The integers a and b are chosen such that
ta ≤ (t− d) < ta+1 and tb ≤ (t+ d) < tb+1.

z(t) = yb −
b−1∑
i=a

(yi+1 − yi)·F
(
ti+1 − t

d

)

s(t) =

√√√√ρb2 −
b−1∑
i=a

∆ρi2·F
(
ti+1 − t

d

)
− z(t)2

Figure 9 shows roughly five hours of electrical data,
the same data compressed with a size-12 buffer at a
2-minute target resolution, and the result of applying
a low-pass filter to both the original and compressed
time series. The filter uses a Hann window with a
5-minute half-width. In the CB-12 plot, the region
bounded by yi ± δi is shaded. For the filtered data,
the shaded regions are bounded by z(t)± s(t).
The filtered data in Figure 9 can be sampled to approx-
imate the average power consumption and noise level
of a personal computer near a certain time t. Directly
sampling the original or compressed time series is less
informative, since t may coincide with an anomalous
spike in the data. Note that it is far more efficient to

Proceedings of Building Simulation 2011:
12th Conference of International Building Performance Simulation Association, Sydney, 14-16 November.

- 1063 -

Figure 9: Electrical data with low-pass filtering ap-
plied to the original and compressed time series

filter the compressed data than the original data, as in
this case the latter contains roughly a hundred times
more datapoints. Yet because the filter parameter d is
somewhat greater than ∆tres, applying the filter to the
compressed time series produces essentially the same
result as applying it to the original.

Application to Building Performance Simulation
The proposed compression algorithm is appropriate
for building performance data because it can be ap-
plied to a wide range of sensor types without the risk of
selecting inappropriate quality guarantees, and with-
out the risk of increasing the number of segments in
an unexpectedly sparse time series. A database would
record a separate time series for each sensor and each
target resolution. Subsets of various time series would
then be extracted from the database at requested reso-
lutions to serve as simulation input data.
For a typical discrete time simulation, compressed in-
put data would be requested at a resolution somewhat
finer than the simulation time step. Although the use
of variable-width segments would reduce bandwidth
requirements between the database and the simulation
platform, the data would have to be converted into a
fixed-width representation before entering the simu-
lation. For a discrete event simulation, as applied to
building performance in Zimmerman (2001), variable-
width segments could be input directly. Simulations of
either type should be able to input the compression er-
rors, and use them to help estimate uncertainty.

Future building energy models may become so de-
tailed that real time compression is required for sim-
ulation output data as well as input data. A trend
towards longer simulation periods has been been ob-
served by Morbitzer (2003), who also highlights the
important information provided by short-term fluctua-
tions found in long-term simulation results.

REFERENCES
Barnaby, C. S. and Crawley, D. B. 2011. Weather data

for building performance simulation. In Hensen, J.
L. M. and Lamberts, R., editors, Building Perfor-
mance Simulation for Design and Operation, pages
37–55. Spon Press.

dos Santos, G. H. and Mendes, N. 2004. Analysis of
numerical methods and simulation time step effects
on the prediction of building thermal performance.
Applied Thermal Engineering, 24(8–9):1129–1142.

Eisenhower, B., Maile, T., Fischer, M., and Mezic,
I. 2010. Decomposing Building System Data for
Model Validation and Analysis Using the Koopman
Operator. In Proceedings of the National IBPSA-
USA Conference, New York, USA.

Keogh, E., Chakrabarti, K., Pazzani, M., and Mehro-
tra, S. 2001a. Locally adaptive dimensionality re-
duction for indexing large time series databases.
In Proceedings of the ACM SIGMOD International
Conference on Management of Data, Santa Barbara,
USA.

Keogh, E., Chu, S., Hart, D., and Pazzani, M. 2001b.
An Online Algorithm for Segmenting Time Series.
In Proceedings of the IEEE International Confer-
ence on Data Mining, San Jose, USA.

Kunz, J., Maile, T., and Bazjanac, V. 2009. Summary
of the Energy Analysis of the First year of the Stan-
ford Jerry Yang & Akiko Yamazaki Environment &
Energy (Y2E2) Building. Technical report, CIFE,
Stanford University.

Lazaridis, I. and Mehrotra, S. 2003. Capturing Sensor-
Generated Time Series with Quality Guarantees.
In Proceedings of the International Conference on
Data Engineering, Bangalore, India.

Morbitzer, C. 2003. Towards the Integration of Simu-
lation into the Building Design Process. PhD thesis,
University of Strathclyde, Glasgow, Scotland.

Raftery, P., Keane1and, M., and Costa, A. 2009. Cal-
ibration of a Detailed Simulation Model to Energy
Monitoring System Data: A Methodology and Case
Study. In Proceedings of the International IBPSA
Conference, Glasglow, Scotland.

Zimmerman, G. 2001. A New Approach to Build-
ing Simulation Based on Communicating Objects.
In Proceedings of the International IBPSA Confer-
ence, Rio de Janeiro, Brazil.

Proceedings of Building Simulation 2011:
12th Conference of International Building Performance Simulation Association, Sydney, 14-16 November.

- 1064 -

