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Fig. 1. Plot of the corrected WWB (24), the incorrect version (6), and the actual
MSE, for a scalar estimation setting with a disjoint set �.

This problem is illustrated in Fig. 1, where the incorrect bound (6)
is compared with the original WWB (4), which can be written as

h2e2�(s;h)

e�(2s;h) + e�(2�2s;�h)
� 2 ~M(s; h)

: (24)

The actual MSE obtained by the optimal estimator can be calcu-
lated using Monte Carlo simulations, and is also plotted. In the
figure, values of a = 1=2 and b = 2 were used. The variance �2

was modified to obtain various signal-to-noise ratios (SNRs), where
SNR = Var(�)=�2.

It is evident from Fig. 1 that the value (6) becomes exceedingly high
at low SNR. Indeed, for SNR values below approximately 0 dB, there
always exist values of s and h such that the denominator of (6) is ar-
bitrarily small, and thus the bound tends to infinity. For SNR values
around 2–4 dB, (6) yields finite values which are larger than the actual
MSE obtained by the optimal estimator. The original version (24), by
contrast, closely follows the true MSE value.
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Abstract—This correspondence presents the results of the enumeration
of Costas arrays of order 27: all arrays found, except for one, are accounted
for by the Golomb and Welch construction methods.

Index Terms—Costas arrays, enumeration, Golomb method, order 27,
Welch method.

I. INTRODUCTION

In this brief note we present the results of the enumeration of
Costas arrays of order 27. This result comes approximately 2.5 years
after the last major enumeration project of Costas arrays undertaken,
namely that for order 26, completed independently and by two dif-
ferent groups led by J. K. Beard [1] and S. Rickard [2], respectively.
Our project was run on various supercomputers in Ireland [GridIre-
land1, which actually ran 68.75% of the project, and some clusters in
University College Dublin (Halation2, Meteorite3, Rowan)] and Scot-
land [the University of Edinburgh’s EPCC’s BlueGene4], as well as
on several other private machines. Taking a CPU running at 2.00GHz
as a reference, the project required approximately 25 years of single
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TABLE I
THE LEXICOGRAPHICALLY MINIMAL REPRESENTATIVES OF THE EQUIVALENCE CLASSES OF COSTAS ARRAYS OF ORDER 27, SHOWN ALONG WITH THE

METHOD THAT PRODUCES THEM: ONE IS T AND IS SYMMETRIC, 6 ARE W , 21 ARE G (6 OF WHICH ARE SYMMETRIC), AND ONE IS SPORADIC.
A=s NEXT TO THE METHOD SYMBOL INDICATES THAT THE EQUIVALENCE CLASS IS SYMMETRIC

CPU time to complete (the memory and storage requirements of the
code used were minimal).

II. BASICS

Let us begin with the definition of a Costas function/permutation
[3]–[5].

Definition 1: Let [n] := f1; . . . ; ng,n 2 and consider a bijection
f : [n] ! [n]; f is a Costas permutation if and only if

8 i; j; k such that 1 � i; j; i+ k; j + k � n :

f(i+ k)� f(i) = f(j + k)� f(j)) i = j or k = 0:

Permutations correspond to permutation arrays by setting the el-
ements of the permutation to denote the positions of the (unique)
1 in the corresponding column of the array, counting from top to
bottom: f(i) = j , aj;i = 1. For example, the array shown in
Fig. 1 corresponds to the permutation 526134. It is customary to
represent the 1’s of a permutation array as “dots” and the 0’s as
“blanks”. The terms “array” and “permutation” will henceforth be
used interchangeably.

The Costas property is invariant under rotations of the array by 90�,
horizontal and vertical flips, and flips around the diagonals, hence a
Costas array gives birth to an equivalence class that contains either 8
Costas arrays, or 4 if the array happens to be symmetric; in the latter
case, we say the equivalence class is symmetric. When presenting the
results of the enumeration, we will give the lexicographically minimal
representative from each equivalence class for brevity.

Fig. 1. The Costas array of order 6 corresponding to the permutation
526134.

There exist two algebraic methods for the construction of Costas
arrays, known as the Golomb and Welch methods [5]–[8].

Theorem 1 (Welch Construction W1(p; g; c)): Let p be a prime, let
g be a primitive root of the finite field (p) of p elements, and let
c 2 [p� 1]� 1 be a constant; then, the function f : [p� 1]! [p� 1]

where f(i) = gi�1+cmodp is a bijection with the Costas property.
Note that W1 arrays for p > 5 are never symmetric [9].

Theorem 2 (Welch Construction W2(p; g)): Let p be a prime, and
let g be a primitive root of the finite field (p) of p elements; then,
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Fig. 2. Forbidden positions for a Costas array of order 25; 26; and 27 (top to
bottom).

the function h : [p � 1] ! [p � 1] generated by W1(p; g; 0) is a
bijection with the Costas property such that h(1) = 1. This implies
that f : [p� 2]! [p� 2] where f(i) = h(i+ 1)� 1, i 2 [p� 2] is
a bijection with the Costas property.

In other words, W2(p; g) follows from W1(p; g; 0) by removing
the left column and the top row, whose common element (the top left
corner) is 1. This construction is always possible.

Theorem 3 (Golomb ConstructionG2(p;m; a; b)): Let p be a prime,
m 2 , and let a; b be primitive roots of the finite field (pm) of
q = pm elements; then, the function f : [q � 2] ! [q � 2] where
af(i) + bi = 1 is a bijection with the Costas property.

If m = 1, G2 arrays are symmetric iff a = b [9]; this special case is
known as the Lempel construction [5].

Theorem 4 (Golomb-Taylor Construction T4(p;m)): Let p be a
prime, m 2 , and let a be a primitive root of the finite field (pm)

of q = pm elements with the property that a2 + a = 1; then, the cor-
responding G2(p;m; a; a) function g : [q � 2] ! [q � 2] satisfies
g(1) = 2 and g(2) = 1, and, consequently, the function f : [q� 4]!

[q � 4] where f(i) = g(i+ 2)� 2, i 2 [q � 4], is a bijection with the
Costas property.

In other words, T4(p;m) follows from G2(p;m; a; a), when a2 +

a = 1, by removing the top two rows and left two columns, whose
intersection, the top left corner 2 � 2 square has its nondiagonal el-
ements equal to 1. This construction is not always possible as such a

may not exist in the field [8].
Costas arrays not constructed by either of these two methods are

commonly referred to as “sporadic.”

III. RESULTS AND ANALYSIS

The enumeration found in total 204 Costas arrays, divided into
29 equivalence classes: their lexicographically minimal members are
shown in Table I. Out of those, we have the following.

• One is a T4(31; 1) and is symmetric.
• 6 are W2(29; g) for the various primitive roots of (29). There

are �(28) = 12 such primitive roots, and they produce 12

W1(29; g; 0) arrays, which correspond to equivalence classes
in pairs related by a vertical flip, or, equivalently, generated by
inverse primitive roots [9], hence there are 6 such equivalence
classes. The removal of the corner dot shows thatW1-equivalence
classes correspond bijectively to W2-equivalence classes.

• 21 are G2(29; 1; a; b) for the various choices of primitive roots a
and b: there are �(28) = 12 such primitive roots. Choosing them
to be equal produces 12 symmetric arrays, which fall in equiv-
alence classes in pairs, hence there are 6 symmetric classes. The
remaining 15 classes contain 8 arrays each and are not symmetric.

• One is sporadic5 and is not symmetric.
Out of the above, four are Costas arrays of order 26 extended by the

addition of a corner dot (three G2, one of which symmetric, and one
W2). Note that, in agreement with Section I, all symmetric Costas ar-
rays are Lempel-constructed, with the exception of the T4 array, which
is produced by removing two corner dots from a Lempel-generated
Costas array.

Efficiency improvement of the search methodology led to the
consideration of forbidden positions for the dots of Costas arrays
for different orders (an idea introduced in [11]). Fig. 2 shows the
forbidden positions for Costas arrays of order 27: if a dot of a
permutation array of order 27 corresponds to a black square, this
array cannot be Costas. This figure is obtained by superposing all
Costas arrays of order 27 and observing which elements host no dot.
The corresponding results for orders 25 and 26 (first shown in [11])
are also offered for comparison purposes; for orders n = 1; 2 and
4 � n � 24, there are no forbidden positions: for n = 3 the middle
position (2; 2) is forbidden.

5The existence of this array was first noted by J. K. Beard [10].

Authorized licensed use limited to: University College Dublin. Downloaded on January 21, 2009 at 12:21 from IEEE Xplore.  Restrictions apply.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 10, OCTOBER 2008 4687

IV. CONCLUSION

The full enumeration of Costas arrays of order 27was presented: 204
arrays were found in total, falling into 29 equivalence classes. One is a
symmetric T4; 6 are W2, and the remaining 21 are G2, out of which 6

are symmetric, and one is sporadic.
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On the Secrecy Capacity of Fading Channels
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Abstract—We consider the secure transmission of information over an
ergodic fading channel in the presence of an eavesdropper. Our eaves-
dropper can be viewed as the wireless counterpart of Wyner’s wiretapper.
The secrecy capacity of such a system is characterized under the assump-
tion of asymptotically long coherence intervals. We first consider the full
channel state information (CSI) case, where the transmitter has access
to the channel gains of the legitimate receiver and the eavesdropper. The
secrecy capacity under this full CSI assumption serves as an upper bound
for the secrecy capacity when only the CSI of the legitimate receiver is
known at the transmitter, which is characterized next. In each scenario,
the perfect secrecy capacity is obtained along with the optimal power
and rate allocation strategies. We then propose a low-complexity on/off
power allocation strategy that achieves near-optimal performance with
only the main channel CSI. More specifically, this scheme is shown to be
asymptotically optimal as the average signal-to-noise ratio (SNR) goes to
infinity, and interestingly, is shown to attain the secrecy capacity under the
full CSI assumption. Overall, channel fading has a positive impact on the
secrecy capacity and rate adaptation, based on the main channel CSI, is
critical in facilitating secure communications over slow fading channels.

Index Terms—Channel state information (CSI), fading, list decoding, se-
crecy capacity, wiretap channel.

I. INTRODUCTION

The notion of information-theoretic secrecy was first introduced by
Shannon [1]. This strong notion of secrecy does not rely on any assump-
tions on the computational resources of the eavesdropper. More specifi-
cally, perfect information-theoretic secrecy requires that I(W ;Z) = 0,
i.e., the signalZ received by the eavesdropper does not provide any addi-
tional information about the transmitted messageW . Shannon consid-
ered a scenario where both the legitimate receiver and the eavesdropper
have direct access to the transmitted signal. Under this model, Shannon
proved that the one-time pad scheme achieves perfect secrecy, if the en-
tropy of the private key K , used to encrypt the message W , is larger
than or equal to the entropy of the message itself (i.e.,H(K) � H(W )
for perfect secrecy). Wyner [2] introduced the wiretap channel which
accounts for the difference in the two noise processes, as observed by
the destination and the wiretapper. In this model, the wiretapper has no
computational limitations and is assumed to know the codebook used
by the transmitter. Under the assumption that the wiretapper’s signal is
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