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Figure 1: Common problems when using an Orbit tool: above is top view of 3D scene, below is what the user sees on screen (i) The pivot point is 

off-screen so the Orbit operation has a similar effect as Zoom; (ii) The pivot point is on-screen, but beyond the object, so the Orbit Tool acts like a 
Pan Tool; (iii) The pivot point is on-screen, but in front of the object, so the Orbit Tool causes the user to look off to empty space. 

Abstract 

Typical commercial 3D CAD tools provide modal tools such as 

pan, zoom, orbit, look, etc. to facilitate freeform navigation in a 

3D scene. Mastering these navigation tools requires a significant 

amount of learning and even experienced computer users can find 

learning confusing and error-prone. To address this we have 

developed a concept called ―Safe 3D Navigation‖ where we 

augment these modal tools with properties to reduce the 

occurance of confusing situations and improve the learning 

experience. In this paper we describe the major properties needed 

for safe navigation, the features we implemented to realize these 

properties, and usability tests on the effectiveness of these 

features. We conclude that indeed these properties do improve the 

learning experience for users that are new to 3D. Furthermore, 

many of the features we implemented for safe navigation are also 

very popular with experienced 3D users. As a result, these 

features have been integrated into six commercial 3D CAD 

applications and we recommend other application developers 

include these features to improve 3D navigation. 

Categories and Subject Descriptors: H.5.2 [User Interfaces]: 

Graphical User Interfaces (GUI), 3D graphics 

Additional Keywords and Phrases: 3D navigation, 3D widgets, 

Desktop 3D environments, virtual camera. 

1 Introduction 

For those of us who are familiar with operating 3D applications, 

we may have long ago forgotten our first experience learning the 

peculiarities of 3D navigation with a mouse and keyboard. For 

example the feeling that ―I‘ve lost the model‖—when in fact the 

model has just been accidentally rotated outside of the viewport 

(see Figure 1), may rekindle memories that desktop 3D navigation 

is a learned skilled which can be quite error-prone when the user 

does not have the proper understanding of the concepts needed 

and good control of their viewpoint. 

With the growing proliferation of 3D CAD tools it is very 

common for people with some experience with 2D applications to 

take up 3D applications. We have been studying this class of ―2D-

to-3D users‖ for several years and have found that even simple 3D 

navigation can be very difficult to learn, resulting in many users 

rejecting 3D tools. Moreover, the users would prefer to remain 

working with 2D applications even though 3D, if learned, would 

make their work much easier.  

Clearly, new-to-3D users struggle in learning other functions 

besides navigation in a typical CAD application. However, there 

is a growing population of people who only really need to learn 

3D navigation to perform their job, for example, viewing 3D 

design plans (rather than creating designs), and therefore we have 

an opportunity to help these users adopt 3D. 

Specifically, we have observed that many users reject 3D tools 

because their initial interaction with the tool results in an 

unproductive and unpleasurable experience, even when trying to 

do the most basic 3D navigation operations like, for example, 

―just looking at the front and then the back of the gearbox‖. 

To address this problem we have developed a collection of 

interaction techniques that support the concept we call ―safe 3D 

navigation‖. The goal of safe navigation is that a user‘s first 

learning experience with navigation in a 3D application should be 

productive and pleasurable. We make 3D navigation ―safe‖ by 
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preventing or circumventing the occurrence of error states and 

misunderstandings that new-to-3D users typically encounter.  

In addition we have found that many of these features that make 

navigation ―safe‖ also continue to benefit users as their experience 

grows and they become experts.  Moreover, users who are already 

familiar with 3D, or even experts, can receive the benefits of safe 

navigation without losing the flexibility and expressiveness of 

traditional unconstrained navigation. 

In this paper we present seven major properties that we have 

found through user observations that are needed for safe 3D 

navigation. We describe the interaction techniques we have 

developed to produce these beneficial properties, and the results 

of usability testing of these techniques in many different 

commercial 3D CAD applications. 

2 Motivation – Initial User Studies 

Initially we conducted several studies where we observed new-to-

3D users trying to accomplish simple 3D navigation tasks in a 

standard commercially available 3D viewer application. A typical 

user in this study was a ―parts order manager‖, 55 years old, with 

some experience using 2D applications for reading machine 

drawings and then ordering parts based on them. 

We observed that these types of users typically encountered very 

frustrating problems on their first exposure to 3D: 

 Users transfer beliefs and skills from 2D applications to their 

detriment. For example, some try to solve all navigation tasks 

with Pan and Zoom and are very ineffective, inefficient, error-

prone and most likely unable to reach their destination. 

 Users can have strong (but incorrect) ideas about how the tools 

should work but do not know about the terminology for 3D 

navigation tools (i.e., orbit, pan, yaw, pitch, azimuth, etc.) and 

the expected behaviors of these tools. 

 Users do not have a sense that a certain collection of tools are 

needed to successfully navigate through a space or around an 

object, and typical interfaces do not assist users in 

understanding that certain tools will be helpful for their current 

navigation task, while others will confound their current task. 

 This misunderstanding in how tools should work leads these 

users to quickly get into even more confusion. For example 

users end up being ―lost in 3D space‖ because they are looking 

at empty space, or see one solid color because they are inside 

the model and do not know how to get back. Similarly, they 

end up in states where the model is a tiny object and cannot get 

it any larger or they end up in situations where the tools seem to 

behave erratically. 

 Another major problem we observed was that when a user gets 

into navigation trouble they quickly make it worse, typically by 

trying to use the same tool that lead to the problem to get out of 

trouble. However, since the user does not know how the 

underlying tool operates, they are not quite sure what input 

gestures will reverse their actions. Alternatively, the user gets 

into further trouble by picking another inappropriate tool that 

makes their situation worse. 

 Users had little appreciation for the suitability of tools to tasks. 

For example, users would try to use an orbit tool while inside a 

building which would almost immediately place them in an 

unknown and unwanted location, such as inside a wall.  

Ultimately, these problems confound learning and the feeling of a 

system ―making sense‖ to the user and being perceived as 

―learnable‖. This all leads to what we call ―interaction 

meltdown‖—the user gives up altogether on trying to figure out 

the system. Thus we are highly motivated to address this situation. 

We concluded from these studies that it seems that a collection of 

factors contribute to a ―meltdown‖, so what is needed is a 

collection of techniques that keep a new user out of trouble —safe 

3D navigation— and this seems to require some combination of 

improved learning and mechanisms to prevent the possibility of 

getting trapped in error situations. 

3 Related Work 

Much research has been done on improving 3D navigation in 

different contexts. In general, our work differs in that we are 

studying the context of 3D commercial desktop applications and 

how to improve initial learning for new-to-3D users. Bowman et 

al. [1997, 1999] study navigation but in the context of immersive 

environments. Tsang et al. [2002] deal with very easy to learn 

navigation but use a specialized device; a spatially aware display. 

In the desktop context some research [Igarashi et al. 1998; 

Zeleznik and Forsberg 1999] differs from our work as they focus 

on gestural input. Others augment the desktop with continuous bi-

manual input [Balakrishnan and Kurtenbach 1999; Zeleznik et al. 

1997] whereas our work uses standard mouse and keyboard input. 

Others report on new interaction metaphors such as flying [Ware 

and Fleet 1997; Tan et al. 2001], eye-in-hand [Ware and Osborne 

1990], using glances [Pierce et al. 1999], and providing a 3D 

world in miniature map [Stoakley et al. 1995] in attempting to 

simplify the task of 3D navigation. Our work does not introduce a 

different metaphor but augments the typical camera controls 

found in most 3D commercial CAD applications.  

Others have looked at methods for constraining or controlling the 

virtual camera to offer better control. Gleicher and Witkin [1992] 

propose controlling the virtual camera by directly manipulating 

the viewing image. Our work differs as we focus on manipulating 

the camera. Mackinlay et al. [1990] deal with controlling the 

velocity of approaching an object while navigating. We use a 

similar approach which is sensitive to the distance to a target, but 

this is one feature amongst many others that contribute to safe 

navigation. Steed [1997] looked at ways of easing navigation by 

maintaining a realistic height above the ground. Our work differs 

is that we discovered in our context that manually controlling 

height is less confusing for new-to-3D users. Chapman and Ware 

[1992] use predictor based feedback to improve control while 

navigating but we do not use this type of feedback. 

In addition, other systems attempt to automatically frame views or 

compose a collection of relevant pathways given the scene content 

[Bares and Kim 2001; Bares and Lester 1999; Christianson et al. 

1996; Drucker and Zeltzer 1995; He et al. 1996; Phillips et al. 

1992; Khan et al. 2005; Hanson and Wernet 1997]. Our work 

differs in that we try to perform minimal analysis of the scene to 

allow our approach to work on slower computers or extremely 

large scenes and use standard camera control functions like orbit, 

pan, etc. Perhaps the most relevant research is the use of guided 

tours [Burtnyk et al. 2002, 2006; Gaylean 1995]. These 

approaches ensure a good viewing experience while trading off 

greater ranges and degrees of freedom of movement.  We adopt 

Burtnyk‘s ShowMotion system as part of our approach to reduce 

the need for manual 3D navigation. 

3D computer games offer a form of ―safe 3D navigation‖ where 

users are typically constrained to remain within the region of 
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game play, collision detection is used, navigation maps determine 

movement paths etc. [Nieuwenhuisen et al. 2007]. This allows the 

user to play the game without the burden of having to control 

arbitrary navigation. Our work differs from game navigation in 

that, first, we are developing safe navigation for the typical 

navigation tools (pan, zoom, orbit, etc) used in 3D CAD. Game 

play navigation is designed for the particular game type, for 

example, simulating running, turning and shooting or driving. In 

contrast, navigation for CAD needs to be optimized for object 

creation, inspection, etc. Second, gaming navigation can be much 

more ―authored‖—the scenes, types of navigation and routes are 

authored ahead of time or dynamically whereas in the CAD 

domain any sort of scene is possible (as users are generally in the 

act of creating the scene or are free to load an arbitrary scene). 

Thus, the types of navigation routes needed are largely unknown 

ahead of time. In summary, while much research has been 

conducted on providing efficient 3D navigation tools, our research 

focus is to provide safe 3D navigation for CAD environments. 

4 Properties Supporting Safe 3D Navigation 

In our investigation to design a safe 3D navigation experience, we 

have defined seven high-level properties that work collectively to 

achieve this goal: (1) cluster and cache tools; (2) create task and 

skill-based tool sets; (3) provide orientation awareness; (4) 

enhance tool feedback; (5) offer pre-canned navigation; (6) 

prevent errors; and (7) recover from errors. While many existing 

navigation tools offer some of these properties, it is important to 

realize the need to provide all of these properties at a rich level to 

achieve a rewarding navigation experience.   

4.1 Cluster & Cache Tools 

In order for the user to rapidly access and experiment with a 

collection of navigation tools, they should be quickly accessible 

and always near the user‘s visual focus. To achieve this, we built 

our 3D navigation widget (see Figure 2) using a tracking menu 

[Fitzmaurice et al. 2003]. With a tracking menu design, the tools 

travel with the cursor. They use a click-through paradigm where 

the arrow cursor moves within a larger mobile and semi-

transparent menu of graphical buttons. Unlike traditional menus, 

when the cursor crosses the exterior edge of the menu, the menu is 

moved to keep it under the cursor. The cursor can also be moved 

within the menu to select items and selecting an item with a 

button press also ―clicks-through‖ to provide pointing/selection to 

the data beneath the menu. 

 

Figure 2: Full Navigation Wheel using a tracking menu. 

Menu items placed on the exterior region of the tracking menu 

have the additional benefit of being easy to hit since a large 

gesture in that direction will guarantee that menu selection (e.g., a 

large cursor gesture to the left will select the Orbit command in 

the Full navigation widget shown in Figure 2). 

Next, the user needs to know which tools are appropriate and 

which ones are more important than others. In our solution, we 

introduce a circular navigation widget with the most common 

tools (e.g. Pan, Zoom, Orbit) on the exterior and the less used 

tools on the interior regions (e.g. Center, Up/Down). See Figure 2.  

The user must be made aware of what tools are available for 

navigating the scene. Many times this is achieved by clustering 

tools in a toolbar. However, we have found that this is not 

sufficient as new-to-3D users typically do not know where to 

start. As such, we have introduced a ―First Contact‖ experience. It 

consists of our navigation widget which is grayed-out and sitting 

in the bottom left of the 3D canvas. Users are naturally drawn to 

this visual and once the cursor enters the widget, a large graphical 

tooltip dialog appears to inform them how to use and select a 

navigation widget for their particular task (see Figure 3). If the user 

clicks on the tooltip, the navigation widget is activated; otherwise 

if the cursor rolls off of the tooltip, it is dismissed.  This design 

offers a light-weight way of inquiry and optional activation of the 

navigation widget. 

 

Figure 3: First Contact Dialog. 

4.2 Task & Skill Based Configurations 

Early in the design process we quickly realized that it is valuable 

to provide a different collection of navigation tools based on the 

skill of the user and their intended task. First, it is important to 

distinguish if a user is familiar with working in 3D. Novices and 

experts have different needs and expectations. With novices, we 

found that they need to move around the space with few surprises 

and do not know how to problem solve to get out of trouble. 

Experts desire more tools and fewer constraints imposed on the 

tools. Our First Contact dialog has two tabs at the top for users to 

self-select whether they are ―New to 3D‖ or ―Familiar with 3D‖. 

This will guide them to choose the proper navigation widget. 

Next, if we know what type of navigation task the user wishes to 

conduct, we can customize both which tools are available (and as 

importantly, which are not available) and the behavior of the 

individual tools. This is particularly useful for novices who can 

easily get into trouble. In general we distinguish between two high 

level navigation tasks: ―viewing an object‖ and ―touring a 

building‖ (see Figure 4) and offer a total of 6 different wheels.  

For novices, the View Object navigation wheel offers only four 

tools: Center, Zoom, Orbit and Rewind. With the Center tool, 

users can interactively place the pivot point by picking a point on 

the model and this point is moved to the center of the 3D canvas. 

The Zoom tool performs a ―center of canvas‖ zoom at this pivot 

point. Orbit operations occur about the pivot point as well. This 

combination ensures that the 3D model remains visible at all 

times. Note that we do not offer a Pan operation as this can cause 

the 3D model to move off of the screen by excessive panning 

often leading to confusion about the location and behavior of the 

pivot point and subsequent operations that use the pivot point. In 
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addition, point zoom (i.e. zooming at the current cursor location) 

is not offered as this also can cause the 3D model to easily fall 

outside the viewing region by conducting a zoom in open space or 

by a subsequent orbit operation. Again, safety is achieved by the 

combination of tools and keeping the pivot point on the model 

surface. Notice also that the layout of this navigation wheel has 

the Orbit tool occupying ¾ of the outer region and so, is larger 

than the other tools. This prominence signals to the user that Orbit 

is more important and more frequently used than the other tools.  

Also for novices, the Tour Building navigation wheel offers only 

four tools: Forward, Look, Up/Down and Rewind. With the 

Forward tool, users click on the 3D model and move towards that 

point. If they click and release, they are brought 50% of the way 

to the point they selected on the 3D surface using a ½ second 

animation. Alternatively, if they click and drag, a 3D slider is 

presented (see Figure 8) where they can move from their current 

position to the surface. They are constrained to not move more 

than 95% towards the front surface and are also able to move 

backwards as well (we shoot a ray behind them for collision 

detection to prevent them from going backward through a wall). 

The Forward tool in combination with the Look tool (which 

mimics head movement while a person is stationary) allows users 

to effectively and safely move around the space. Note that, for 

example, the Orbit tool is not offered as this often causes 

unexpected and disastrous results for novices when used inside a 

3D model. As a convenience we introduced the Up/Down tool 

which acts like an elevator and provides a graphical slider to 

allow the user to adjust their height in the scene (see Figure 7). 

This tool is often more intuitive for novices than using a 

constrained Pan operation. In terms of layout, the Forward tool 

occupies ¾ of the outer region and is larger than the other tools to 

indicate its importance and ease of access. 

 

Figure 4: Six navigation wheels whose tool collection, tool 

placement and size are based on a user‘s task and skill level. 

The Full (Combined) navigation wheel (see Figure 4) is designed 

for more advanced users who are already familiar with working 

and navigating in 3D. In this wheel we offer tools for both ―object 

inspection‖ and ―touring a building‖. Specifically, the collection 

of tools consists of: Orbit, Zoom (point zoom), Pan, Center, Look, 

Up/Down, Walk (instead of Forward) and Rewind. The more 

common tools are on the exterior region (Pan, Zoom and Orbit) 

which are larger and more easily accessed. The Walk tool offers 

the ability to simultaneously adjust the user‘s movement speed 

and viewing direction. With this tool, we found it important to 

warp the cursor to the center of the screen and create a dead zone 

region where no movement occurs. This properly orients the user 

to better predict the walk behavior.  

For more advanced users, we offer miniaturized versions of the 

large navigation wheels for faster tool access and to have a 

smaller visual footprint. The ―mini wheels‖ (see right-hand 

column of Figure 4) are roughly the size of the cursor and replace 

the arrow cursor [Fitzmaurice et al. 2008]. Note also that we 

upgrade some of the individual tools in the mini wheels. For 

example, instead of offering the Forward tool, we use a Walk tool 

in the ―Mini Tour Building‖ wheel. 

4.3 Orientation Awareness 

Another common problem we have observed with new-to-3D 

users is loss of orientation. This problem manifests in some 

different ways. One surprising but common problem is what we 

call ―3D amnesia‖; users seem to forget where they are in 3D.  

For example, in observing some skilled Photoshop (2D) users, we 

found that some misinterpreted 3D scenes. For example, when 

first shown a ¾ perspective view of a box and then switched to a 

side view of the box (by clicking on a ―side view‖ icon) without 

any animated rotation between the two views, users 

misinterpreted the results. Typical comments would be: ―my box 

disappeared and there‘s only a square now‖. Clearly for some 

users, they were confounded by their familiarity with 2D 

applications and had a difficult time understanding and realizing 

that there were hidden elements in the depth dimension. Once 

they were told, or realized that the object was three dimensional, 

users requested different views of the object not by specific view 

naming conventions like ―front view‖ or ―bird‘s eye view‖, etc. 

but by spatial relationships relative to their current view. For the 

box example, participants stated that they wanted ―to look at the 

side around the edge‖ or ―go around to the back side.‖ 

Another way disorientation manifests itself is in the commonly 

observed problem where the user navigates to a view without 

understanding how they got there (and how to get back) and hence 

lose their orientation. When the part of the 3D scene visible on the 

screen is very sparse (e.g. an all black color because the user is 

looking at the underside of a landscape) the view offers no clues 

as to what they are looking at or where they are looking from and 

so, users become disoriented. 

To improve orientation awareness, we developed a 3D widget 

called the ViewCube (Figure 5). The ViewCube is a cube-shaped 

widget placed in the corner of the screen that serves as a proxy 

object for the 3D scene being viewed (see Figure 9). No matter 

where the user navigates or what view they switch to, the 

ViewCube, shows the orientation of the scene‘s sides (top, 

bottom, left, right, back, front) relative to the current viewpoint.  

 

Figure 5: ViewCube showing orientation for: (a) Top-Front-

Right view, (b) view from Bottom looking up, and (c) a view 
when the scene or object is upside down. 

Note that the ViewCube provides information beyond that 

available from the typical ground plane grid where a user may be 

able to infer the height from which they are looking at the ground 

plan but not from which side of the grid plane they are looking. 

The typical ‗xyz‘ triad often shown in 3D scenes can be used to 

infer the current orientation but the user is still left to infer how 

10



 

 

these mathematical abstractions relate to their scene and 

orientation. We believe the ViewCube proxy representation of the 

scene preserves the user‘s sense of orientation much better than 

the grid and triad. Later we describe how the ViewCube serves as 

a view switching controller. Also see [Khan 2007] for a complete 

description and evaluation of the ViewCube.  

4.4 Enhanced Feedback 

We found that some particular types of visual feedback greatly 

enhance ―safety‖. The first, and perhaps most critical feedback, is 

to explicitly display the navigation pivot point in the scene.  

4.4.1 Pivot Point. Typically in 3D applications many of the 

navigation operations are based on or affect the pivot point but it 

is usually not displayed. However, we have observed that this lack 

of display leaves many users unaware of the existence and effect 

of the pivot point placement. This in turn can result in some of the 

most extreme confusion.  

For example, the pivot point for the orbit function is generally at 

the center of the scene or at the center of the currently selected 

object. When this is the case, turning an object using the orbit 

command results in the object staying in view and the user having 

the sensation that they are ―orbiting‖ around the object.  

However, there are many common operations or situations that 

result in the orbit pivot point being located away from the center 

of the scene or off of the center of the selected object and this can 

result in great confusion. For example, (see Figure 1i) suppose the 

pivot point is located at the extreme left side of the screen in the 

scene. A user clicks and drags to perform an orbit operation which 

results in an orbit around a very large radius. While this 

mathematically makes sense, to a new user, unaware of the 

displaced pivot point (or even the existence of a pivot point) the 

orbit movement appears to make the user zoom in/out from 

model. We have observed that users become confused and report 

things like ―oh, I must have picked zoom by accident‖, ―I thought 

I knew how orbit worked, but now…‖. The net result is that these 

types of perceived error states confound learning and create a bad 

experience for the user. 

To combat this, we have made the pivot point a visibly labeled 

green-ball in the scene with visual hints about its depth in the 

scene relative to the model (i.e. inside, outside or on the surface of 

a 3D model). Furthermore, the green-ball is wrapped in three 

orthogonal ―belt lines‖ to make any rotation of the ball 

perceivable (see Figure 6). 

When we introduced this feature, it had an immediate positive 

effect in all of our user tests. Users immediately understood the 

role of the pivot point (―seems to revolve around that ball‖) and 

confusions between commands as described above were 

eliminated. We introduced the visible pivot point at the same time 

as allowing the user to move the pivot point with the center 

command (described previously). Thus we saw that once users 

could see and move the pivot point, they could successfully 

experiment with it, and place it at different spots to see the effect. 

This resulted in very positive experiences where users quickly 

learned the basic role of the pivot point and developed strategies 

for using it effectively. 

The green-ball also has a special behavior during navigation 

commands. For the Zoom and Forward commands, as the user 

moves forward or zooms in, the pivot point grows/shrinks in size 

accordingly to give a strong visual clue as to the type of 

movement that is occurring. It also becomes transparent as it 

becomes larger to reduce the occlusion of the view.  Once the 

command is completed the green-ball disappears and is resized to 

its original size on the screen for the next operation.  

 

Figure 6: Visual appearance of the green-ball pivot point: (a) in 
front of a surface –fully visible, (b) on a surface –partially 

occluded, and (c) behind a surface –fully occluded. 

4.4.2 Sliders. Another type of feedback that we believed would 

reduce confusion and user errors was to provide feedback on 

dragging directions. Typical 3D applications implement GUI tools 

such as orbit and pan where dragging in the 3D content window 

operates the tool. These particular tools use both dimensions of 

mouse movement and a mapping between how one moves the 

mouse (up/down, left/right) which is generally known in the case 

of pan, or quickly learned for orbit. 

However, for tools such as the Up/Down tool, we present a 

graphical slider on mouse-down which simplifies and instructs the 

user how to operate the tool (see Figure 7). For example, the 

vertical slider indicates up/down mouse input, the labels denote 

the range available, the slider signals the current altitude, and the 

ghosted slider thumb shows the initial altitude for additional 

orientation.  

 

Figure 7: Up/Down tool slider: (a) initially activated, (b) as the 

cursor is dragged up or (c) down. A ghost slider shows initial 

position.  

 

Figure 8: Forward tool ―perspective‖ slider: (a) initial state, (b) 

50% and (c) 90% to target surface. 

We discovered that more ambiguous tools such as the Forward 

tool require additional assistance in relating the direction of user 

input to the 3D scene motion. Thus we introduced a perspective 

slider (see Figure 8). When the user clicks on the 3D model with 

the Forward tool active, the green-ball is placed on the target 

surface. Then the top of the perspective slider is placed on top of 

the green-ball. Releasing the mouse causes an animation to move 

towards the green-ball by 50% of this distance. During this 

navigation animation, the perspective slider remains visible and 

the slider moves in unison (see Figure 8b).  Alternatively, a user 

can drag the mouse and move forward or backwards by any 

percentage. Drawing the slider with a perspective foreshortening, 
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and having the thumb size change appropriately, signals depth 

information to the user and better relates their input actions to the 

3D scene motion.  

In our subsequent user testing, the benefits of this explicit 

feedback were immediate and we observed users now had little 

trouble learning to use these tools. 

4.4.3 Labels vs. Icons. Through our studies we have found that 

new-to-3D users can get distracted when trying to read graphical 

icons that attempt to identify navigation tools.  In fact, we noticed 

that some users were distracted by attractive toolbar icons and 

would get into trouble by picking them. For example, in our 

commercial application testing, one attractive tool icon happened 

to be ―create and manipulate a 3D cutting plane‖. When selected 

in the normal exploration of available tools, this tool would really 

confuse the user and severely contaminate their mental model of 

how the navigation tools worked. 

Our philosophy has been to use text labels to describe the tools 

instead of graphical icons. Thus, our navigation wheels all use 

text labels instead of icons to label the individual tool wedges. We 

believe that their functionality can be more readily associated and 

consumed by users learning a new system. In contrast, the 

graphical icons start as, essentially, a foreign language or notation 

that the user must learn. 

In addition, we have found that users rarely monitor the shape and 

appearance of the cursor. Perhaps this is due to the fact that often 

times a cursor is not updated, changes to a wait cursor, or the user 

is focusing on the application data. Also, it is another graphical 

symbol that must be translated and understood in the mind of the 

user. Thus, we provide textual cursor labels to reinforce the 

selection of the current tool and we have found this to be very 

effective in our user studies. 

Lastly, we have found that enhancing feedback can be as simple 

as providing helper text messages during tool usage to guide the 

user through the learning stages. For example, if the user clicks 

down in open space while in the Center tool (which is invalid), we 

present the helper text ―Click or drag on model to set pivot‖ until 

the user drags the cursor over a valid part of the 3D model. 

4.5 Pre-Canned Navigations 

We have found that for novices, since freeform 3D navigation can 

be difficult and may require the use of several different tools, at 

times the best way to improve the experience is to reduce the need 

for freeform navigation. Thus, we offer facilitators such as the 

ViewCube which allows users to quickly get to standard views. It 

can be dragged on, or the faces, edges or corners can be clicked 

on, to easily orient the scene to the corresponding view. Once a 

component of the ViewCube is selected, the system smoothly 

animates to the new view to allow the user to stay oriented. When 

on a face view, additional triangle elements appear to offer pre-

canned navigation to adjacent faces. Lastly, a home icon is always 

available to smoothly transition the user to a safe preset view.  

Secondly, we offer ShowMotion [Burtnyk et al. 2006], a system 

to create a collection of important views (i.e. ―shots‖) and easily 

attach transition effects (such as fade-to-black) and camera 

motions (such as pan, zoom, crane-up, etc.). These ShowMotion 

shots are represented as thumbnail icons and collected in a strip 

along the bottom of the 3D canvas (Figure 9). They can be named 

and grouped into sets. This allows users to quickly create and 

organize a collection of important views. Most importantly, 

ShowMotion provides users a visual catalog of important views 

that they can click on and, consequently, move to and see the 3D 

data presented not as a static image but using motion. Thus, their 

freeform 3D navigation is replaced with pre-canned high quality 

camera motion. 

 

Figure 9: 3D canvas with ShowMotion system shown at the 

bottom and the ViewCube in the top right corner.  

4.6 Constraints (Error Prevention) 

A number of constraints have been added to our safe 3D 

navigation system to prevent errors. As mentioned earlier, 

providing only a subset of navigation tools which are selected 

based on user experience and the navigation task can be quite 

effective. For example, not offering the Orbit tool when new-to-

3D users navigate through a building prevents the scene from 

―flying away‖. 

More conventionally, the navigation tools themselves offer 

constraints. For example, in the Forward Tool, we prevent the 

user from easily moving through walls. The Up/Down slider has 

limits imposed on how high or low the user can move based on 

the bounding box of the 3D model. Zooming in the View Object 

wheel has a maximum and minimum object size so that the object 

is always visible. Lastly, the Pan tool shoots a ray into the scene 

and adjusts the algorithm to keep the cursor on the initial click 

down point on the 3D geometry to imitate 2D panning where the 

cursor and the image being panned are locked together. 

The design of the green-ball and its placement algorithms serve as 

additional error prevention mechanisms. For example, preventing 

the pivot point from moving off screen helps users understand and 

predict the interaction behavior. When a user places the pivot 

point on the 3D model, the system attempts to keep it ―sticky‖ and 

moves the pivot point along with the 3D model. If that part of the 

model moves off screen, the pivot point is centered in the canvas 

but keeping the same depth level. These designs, in particular,  

making the pivot point visible, allow the user to see the 

relationship between mouse movement and tool action. 

Another technique we have adopted to improve a user’s first 

experience and to improve learning is ―cursor wrapping‖. We 

observed that many users became confused about how a particular 

navigation tool works when dragging the cursor and hitting the 

edge of the screen. The tool would, in their mind, stop working 

and we would get comments like ―this [tool] seems to have quit 

working…‖ or ―I thought I knew how this worked but now I’m 

not so sure…‖ We believe the root cause of the problem is that 

users are paying attention to the movement of the scene (rightly 

so) and not paying attention to the location of the cursor once they 

start dragging.  Since the mouse is still free to move even though 

the cursor is against the display edge, confusion sets in. 

Subsequent user testing showed that a very effective fix for this 
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problem was ―cursor wrapping‖ where we essentially remove the 

typical screen edge constraint. When the cursor hits the edge of 

the 3D canvas, we warp the cursor over to the opposite side of the 

3D canvas and continue movement (see Figure 10). We were 

surprised how effectively cursor wrapping eliminated this type of 

confusion and also how users did not even notice or find the 

warping of the cursor confusing or out of the ordinary –lending 

more evidence that users are not attending to the cursor once they 

start moving in the scene. 

 

Figure 10: Cursor wrapping from bottom to top when moving 

the cursor downwards (captured in time from left to right). 

4.7 Error Recovery 

We observed in our user studies that once new-to-3D users get 

into trouble while navigating, they try to get out of trouble by 

navigating. For example, a user accidentally gets to an ―empty 

view‖ using orbit. They then try to find their model and get back 

to a view of something by trying to zoom out or by panning. In 

many cases, if their belief about where they were was wrong, this 

quite often made the situation even worse. 

One might expect that previous experience with other software 

applications such as word processors or web browsers would lead 

users to request ―recovery‖ features found in those applications 

such as ―undo‖ or ―home‖. However, we noted that users did not 

look for or ask for these types of functions when they were 

disoriented. This was especially poignant when we added the 

ViewCube with its ―home‖ function but users who got into very 

difficult 3D navigation error states still ignored the ViewCube and 

continued to struggle with navigation tools or gave up on the task 

altogether. Again, once a user gets in trouble, they attempt to use 

the same tool (which is immediately at hand) to get out of trouble. 

With this in mind we introduced the Rewind tool into the wheels 

to try to get undo and home type of functionality immediately ―at 

hand‖. Figure 4 shows the Rewind tool button in every wheel. The 

Rewind tool works as follows: when a user presses on the Rewind 

tool in the wheel, a thumbnail strip of the history of a user‘s 

navigation (segmented according to drag events) appears at the 

location of the cursor. The user can then drag to the desired 

thumbnail. As they drag over each thumbnail the scene does a 

smooth animated transition to the view associated with the 

thumbnail. In effect, users are able to ―scrub‖ back and forth in 

their navigation history. Also, just a single click on the Rewind 

tool moves the user back a single ―step‖ to the previous view. 

The good news in our user testing was that most users found and 

understood the Rewind tool very quickly when placed in the 

wheels. The bad news was that despite being made aware of 

Rewind, most new-to-3D users still used a strategy of trying to 

manually reverse their navigation when they got into trouble. 

However, as they grew more comfortable they began to use 

Rewind. Expert users adopted a ―use rewind‖ strategy almost 

immediately after learning about the tool. 

 

Figure 11: Using the Rewind Tool. Dragging the cursor left, 

reverses the user‘s navigation in a smooth continuous fashion. 

The thumbnail strip provides visual history guidance. 

While applications often have a navigation queue to undo/redo 

camera events, we found that they are not very robust. For 

example, they are often represented as two small icons 

somewhere on the bezel of the view which offer only discrete 

navigation event traversal. Often the transaction cost of accessing 

the tool and the user not knowing how they segmented their 

navigation make this facility rarely used. In contrast, we promote 

the Rewind tool as a first class tool, have it readily available on 

the navigation wheel, allow continuous and discrete history 

traversal and use thumbnails as visual history guidance. 

Finally, we note that new-to-3D users often do not immediately 

use Rewind to get out of trouble and that this indicates that 

Rewind cannot be used as the cure-all for navigation problems. 

Thus our emphasis has been on tools that prevent errors and help 

users to learn how the tools work as quickly as possible. 

5 Usability 

The source of our observations and conclusions made above are 

from the research and development of these techniques, which 

took place over a two year period, in the context of a product 

development process. The goal of our work was to add these 

navigation controls into the next product release of six 

commercial 3D CAD applications.  This would make it easier for 

new-to-3D users to learn 3D navigation and for experienced 3D 

users to have better navigations tools. Additionally, these tools 

would be the same across applications so an experienced user 

could easily transfer their 3D navigation skills from one 

application to another. 

We conducted observational usability studies on approximately 55 

individuals trying out various design variations of our tools as we 

refined the design. The type of user varied from new-to-3D users 

to very experienced (professional) 3D users. Typically the new-to-

3D users had some computer experience with office automation 

software. The experienced 3D users were a range of CAD 

professionals from mechanical engineers to architects. 

We asked users to ―think aloud‖ and typically spent 45 minutes 

asking them to attempt particular navigation tasks or simply to 

explore and navigate around different types of models. Typically 

a group of four interaction designers watched the session via 

video connection and analyzed the behaviors and results. 

The previous sections have described the major specific results we 

observed. In general, over the course of testing and modifying for 

new-to-3D users, we were able to move from very error prone and 

unsuccessful navigation sessions to sessions where the users were 
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successfully completing the tasks without requiring tester 

intervention to recover from errors. Experienced 3D users, 

typically in our early user tests, reported they would still prefer 

the navigation tools of their favorite or working 3D application 

(e.g. 3D Max, Inventor, etc.). By the end of testing, experienced 

users typically reported that they ―definitely would learn the 

tools‖ as they seemed ―really promising‖. Moreover, some 

particular tools like Rewind and Walk were highlighted as ―got to 

have!‖ A small number of expert users (1 in 10 in our last series 

of tests) quickly understood and learned the tools but struggled to 

overcome their habituated behaviors of traditional tool bar tools  

—they involuntarily tried to pick a tool off of the wheel and then 

move away from the wheel to apply it. This indicates that our 

tools may be easy to learn but still, for some very skilled users, 

some habituated motor actions will have to be unlearned.  

Our techniques were also reviewed and tried by at least 12 

product designers for the target products. The designers are 

typically very experienced and savvy 3D users. In general 

feedback was very positive, and, like our tested expert 3D users, 

some functions like Rewind and Up/Down were very welcome. 

We were also surprised that some of these designers noticed that 

we were constraining the pivot point in some way. For example, 

one designer reported to us: ―you are doing something very clever 

with pivot point so I don‘t get into trouble‖. Finally, this group of 

product designers was extremely enthusiastic about our power-

user ―mini-wheels‖ as they had already become experienced 

wheel users and welcomed the miniaturization. 

6 Conclusions 

Our goal was to have users who are ―new to 3D‖ experience a 

productive and pleasurable first impression when navigating in 

3D. The initial user studies showed that new-to-3D users can get 

into navigation trouble very quickly (within 30 seconds) and once 

in trouble, have a hard time getting back to a known, comfortable 

viewing state. By applying the seven properties outlined above, 

we have shown that a significant advance can be made in offering 

a ―safe 3D navigation‖ experience.  

Clearly there are some limitations with our approach. For 

example, users could bypass the First Contact dialog, pick the 

wrong wheel for the wrong navigation task, get confused over the 

tracking menu paradigm, and be annoyed with the tool subsets. 

Moreover, our design has small learning discontinuities when a 

new-to-3D user transitions to an intermediate 3D user by 

changing some of the tools and tool behavior. In practice, we have 

found this disruption to be very minimal. 

Future research would focus on improving the navigation tools to 

detect and react to the 3D geometry. While we have some of this 

―smart navigation‖ working in our lab, it utilizes the GPU which 

is often different or not available on the wide range of computers 

on which commercial applications must run. 

While some of our seven properties may sound obvious, it is how 

intensely and richly each one is supported that constitutes a better 

and safer navigation system. For 3D navigation in CAD and 

similar application domains to be more widely adopted, as an 

industry we must evolve the tools to be more approachable and 

less brittle to ease 2D users into the joys of 3D. 
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