
Copyright © 2008 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
I3D 2008, Redwood City, California, February 15–17, 2008.
© 2008 ACM 978-1-59593-983-8/08/0002 $5.00

Safe 3D Navigation

George Fitzmaurice, Justin Matejka, Igor Mordatch, Azam Khan, Gordon Kurtenbach

Autodesk Research

210 King Street East, Toronto, Ontario, Canada

{firstname.lastname}@autodesk.com

Figure 1: Common problems when using an Orbit tool: above is top view of 3D scene, below is what the user sees on screen (i) The pivot point is

off-screen so the Orbit operation has a similar effect as Zoom; (ii) The pivot point is on-screen, but beyond the object, so the Orbit Tool acts like a
Pan Tool; (iii) The pivot point is on-screen, but in front of the object, so the Orbit Tool causes the user to look off to empty space.

Abstract

Typical commercial 3D CAD tools provide modal tools such as

pan, zoom, orbit, look, etc. to facilitate freeform navigation in a

3D scene. Mastering these navigation tools requires a significant

amount of learning and even experienced computer users can find

learning confusing and error-prone. To address this we have

developed a concept called ―Safe 3D Navigation‖ where we

augment these modal tools with properties to reduce the

occurance of confusing situations and improve the learning

experience. In this paper we describe the major properties needed

for safe navigation, the features we implemented to realize these

properties, and usability tests on the effectiveness of these

features. We conclude that indeed these properties do improve the

learning experience for users that are new to 3D. Furthermore,

many of the features we implemented for safe navigation are also

very popular with experienced 3D users. As a result, these

features have been integrated into six commercial 3D CAD

applications and we recommend other application developers

include these features to improve 3D navigation.

Categories and Subject Descriptors: H.5.2 [User Interfaces]:

Graphical User Interfaces (GUI), 3D graphics

Additional Keywords and Phrases: 3D navigation, 3D widgets,

Desktop 3D environments, virtual camera.

1 Introduction

For those of us who are familiar with operating 3D applications,

we may have long ago forgotten our first experience learning the

peculiarities of 3D navigation with a mouse and keyboard. For

example the feeling that ―I‘ve lost the model‖—when in fact the

model has just been accidentally rotated outside of the viewport

(see Figure 1), may rekindle memories that desktop 3D navigation

is a learned skilled which can be quite error-prone when the user

does not have the proper understanding of the concepts needed

and good control of their viewpoint.

With the growing proliferation of 3D CAD tools it is very

common for people with some experience with 2D applications to

take up 3D applications. We have been studying this class of ―2D-

to-3D users‖ for several years and have found that even simple 3D

navigation can be very difficult to learn, resulting in many users

rejecting 3D tools. Moreover, the users would prefer to remain

working with 2D applications even though 3D, if learned, would

make their work much easier.

Clearly, new-to-3D users struggle in learning other functions

besides navigation in a typical CAD application. However, there

is a growing population of people who only really need to learn

3D navigation to perform their job, for example, viewing 3D

design plans (rather than creating designs), and therefore we have

an opportunity to help these users adopt 3D.

Specifically, we have observed that many users reject 3D tools

because their initial interaction with the tool results in an

unproductive and unpleasurable experience, even when trying to

do the most basic 3D navigation operations like, for example,

―just looking at the front and then the back of the gearbox‖.

To address this problem we have developed a collection of

interaction techniques that support the concept we call ―safe 3D

navigation‖. The goal of safe navigation is that a user‘s first

learning experience with navigation in a 3D application should be

productive and pleasurable. We make 3D navigation ―safe‖ by

7

preventing or circumventing the occurrence of error states and

misunderstandings that new-to-3D users typically encounter.

In addition we have found that many of these features that make

navigation ―safe‖ also continue to benefit users as their experience

grows and they become experts. Moreover, users who are already

familiar with 3D, or even experts, can receive the benefits of safe

navigation without losing the flexibility and expressiveness of

traditional unconstrained navigation.

In this paper we present seven major properties that we have

found through user observations that are needed for safe 3D

navigation. We describe the interaction techniques we have

developed to produce these beneficial properties, and the results

of usability testing of these techniques in many different

commercial 3D CAD applications.

2 Motivation – Initial User Studies

Initially we conducted several studies where we observed new-to-

3D users trying to accomplish simple 3D navigation tasks in a

standard commercially available 3D viewer application. A typical

user in this study was a ―parts order manager‖, 55 years old, with

some experience using 2D applications for reading machine

drawings and then ordering parts based on them.

We observed that these types of users typically encountered very

frustrating problems on their first exposure to 3D:

 Users transfer beliefs and skills from 2D applications to their

detriment. For example, some try to solve all navigation tasks

with Pan and Zoom and are very ineffective, inefficient, error-

prone and most likely unable to reach their destination.

 Users can have strong (but incorrect) ideas about how the tools

should work but do not know about the terminology for 3D

navigation tools (i.e., orbit, pan, yaw, pitch, azimuth, etc.) and

the expected behaviors of these tools.

 Users do not have a sense that a certain collection of tools are

needed to successfully navigate through a space or around an

object, and typical interfaces do not assist users in

understanding that certain tools will be helpful for their current

navigation task, while others will confound their current task.

 This misunderstanding in how tools should work leads these

users to quickly get into even more confusion. For example

users end up being ―lost in 3D space‖ because they are looking

at empty space, or see one solid color because they are inside

the model and do not know how to get back. Similarly, they

end up in states where the model is a tiny object and cannot get

it any larger or they end up in situations where the tools seem to

behave erratically.

 Another major problem we observed was that when a user gets

into navigation trouble they quickly make it worse, typically by

trying to use the same tool that lead to the problem to get out of

trouble. However, since the user does not know how the

underlying tool operates, they are not quite sure what input

gestures will reverse their actions. Alternatively, the user gets

into further trouble by picking another inappropriate tool that

makes their situation worse.

 Users had little appreciation for the suitability of tools to tasks.

For example, users would try to use an orbit tool while inside a

building which would almost immediately place them in an

unknown and unwanted location, such as inside a wall.

Ultimately, these problems confound learning and the feeling of a

system ―making sense‖ to the user and being perceived as

―learnable‖. This all leads to what we call ―interaction

meltdown‖—the user gives up altogether on trying to figure out

the system. Thus we are highly motivated to address this situation.

We concluded from these studies that it seems that a collection of

factors contribute to a ―meltdown‖, so what is needed is a

collection of techniques that keep a new user out of trouble —safe

3D navigation— and this seems to require some combination of

improved learning and mechanisms to prevent the possibility of

getting trapped in error situations.

3 Related Work

Much research has been done on improving 3D navigation in

different contexts. In general, our work differs in that we are

studying the context of 3D commercial desktop applications and

how to improve initial learning for new-to-3D users. Bowman et

al. [1997, 1999] study navigation but in the context of immersive

environments. Tsang et al. [2002] deal with very easy to learn

navigation but use a specialized device; a spatially aware display.

In the desktop context some research [Igarashi et al. 1998;

Zeleznik and Forsberg 1999] differs from our work as they focus

on gestural input. Others augment the desktop with continuous bi-

manual input [Balakrishnan and Kurtenbach 1999; Zeleznik et al.

1997] whereas our work uses standard mouse and keyboard input.

Others report on new interaction metaphors such as flying [Ware

and Fleet 1997; Tan et al. 2001], eye-in-hand [Ware and Osborne

1990], using glances [Pierce et al. 1999], and providing a 3D

world in miniature map [Stoakley et al. 1995] in attempting to

simplify the task of 3D navigation. Our work does not introduce a

different metaphor but augments the typical camera controls

found in most 3D commercial CAD applications.

Others have looked at methods for constraining or controlling the

virtual camera to offer better control. Gleicher and Witkin [1992]

propose controlling the virtual camera by directly manipulating

the viewing image. Our work differs as we focus on manipulating

the camera. Mackinlay et al. [1990] deal with controlling the

velocity of approaching an object while navigating. We use a

similar approach which is sensitive to the distance to a target, but

this is one feature amongst many others that contribute to safe

navigation. Steed [1997] looked at ways of easing navigation by

maintaining a realistic height above the ground. Our work differs

is that we discovered in our context that manually controlling

height is less confusing for new-to-3D users. Chapman and Ware

[1992] use predictor based feedback to improve control while

navigating but we do not use this type of feedback.

In addition, other systems attempt to automatically frame views or

compose a collection of relevant pathways given the scene content

[Bares and Kim 2001; Bares and Lester 1999; Christianson et al.

1996; Drucker and Zeltzer 1995; He et al. 1996; Phillips et al.

1992; Khan et al. 2005; Hanson and Wernet 1997]. Our work

differs in that we try to perform minimal analysis of the scene to

allow our approach to work on slower computers or extremely

large scenes and use standard camera control functions like orbit,

pan, etc. Perhaps the most relevant research is the use of guided

tours [Burtnyk et al. 2002, 2006; Gaylean 1995]. These

approaches ensure a good viewing experience while trading off

greater ranges and degrees of freedom of movement. We adopt

Burtnyk‘s ShowMotion system as part of our approach to reduce

the need for manual 3D navigation.

3D computer games offer a form of ―safe 3D navigation‖ where

users are typically constrained to remain within the region of

8

game play, collision detection is used, navigation maps determine

movement paths etc. [Nieuwenhuisen et al. 2007]. This allows the

user to play the game without the burden of having to control

arbitrary navigation. Our work differs from game navigation in

that, first, we are developing safe navigation for the typical

navigation tools (pan, zoom, orbit, etc) used in 3D CAD. Game

play navigation is designed for the particular game type, for

example, simulating running, turning and shooting or driving. In

contrast, navigation for CAD needs to be optimized for object

creation, inspection, etc. Second, gaming navigation can be much

more ―authored‖—the scenes, types of navigation and routes are

authored ahead of time or dynamically whereas in the CAD

domain any sort of scene is possible (as users are generally in the

act of creating the scene or are free to load an arbitrary scene).

Thus, the types of navigation routes needed are largely unknown

ahead of time. In summary, while much research has been

conducted on providing efficient 3D navigation tools, our research

focus is to provide safe 3D navigation for CAD environments.

4 Properties Supporting Safe 3D Navigation

In our investigation to design a safe 3D navigation experience, we

have defined seven high-level properties that work collectively to

achieve this goal: (1) cluster and cache tools; (2) create task and

skill-based tool sets; (3) provide orientation awareness; (4)

enhance tool feedback; (5) offer pre-canned navigation; (6)

prevent errors; and (7) recover from errors. While many existing

navigation tools offer some of these properties, it is important to

realize the need to provide all of these properties at a rich level to

achieve a rewarding navigation experience.

4.1 Cluster & Cache Tools

In order for the user to rapidly access and experiment with a

collection of navigation tools, they should be quickly accessible

and always near the user‘s visual focus. To achieve this, we built

our 3D navigation widget (see Figure 2) using a tracking menu

[Fitzmaurice et al. 2003]. With a tracking menu design, the tools

travel with the cursor. They use a click-through paradigm where

the arrow cursor moves within a larger mobile and semi-

transparent menu of graphical buttons. Unlike traditional menus,

when the cursor crosses the exterior edge of the menu, the menu is

moved to keep it under the cursor. The cursor can also be moved

within the menu to select items and selecting an item with a

button press also ―clicks-through‖ to provide pointing/selection to

the data beneath the menu.

Figure 2: Full Navigation Wheel using a tracking menu.

Menu items placed on the exterior region of the tracking menu

have the additional benefit of being easy to hit since a large

gesture in that direction will guarantee that menu selection (e.g., a

large cursor gesture to the left will select the Orbit command in

the Full navigation widget shown in Figure 2).

Next, the user needs to know which tools are appropriate and

which ones are more important than others. In our solution, we

introduce a circular navigation widget with the most common

tools (e.g. Pan, Zoom, Orbit) on the exterior and the less used

tools on the interior regions (e.g. Center, Up/Down). See Figure 2.

The user must be made aware of what tools are available for

navigating the scene. Many times this is achieved by clustering

tools in a toolbar. However, we have found that this is not

sufficient as new-to-3D users typically do not know where to

start. As such, we have introduced a ―First Contact‖ experience. It

consists of our navigation widget which is grayed-out and sitting

in the bottom left of the 3D canvas. Users are naturally drawn to

this visual and once the cursor enters the widget, a large graphical

tooltip dialog appears to inform them how to use and select a

navigation widget for their particular task (see Figure 3). If the user

clicks on the tooltip, the navigation widget is activated; otherwise

if the cursor rolls off of the tooltip, it is dismissed. This design

offers a light-weight way of inquiry and optional activation of the

navigation widget.

Figure 3: First Contact Dialog.

4.2 Task & Skill Based Configurations

Early in the design process we quickly realized that it is valuable

to provide a different collection of navigation tools based on the

skill of the user and their intended task. First, it is important to

distinguish if a user is familiar with working in 3D. Novices and

experts have different needs and expectations. With novices, we

found that they need to move around the space with few surprises

and do not know how to problem solve to get out of trouble.

Experts desire more tools and fewer constraints imposed on the

tools. Our First Contact dialog has two tabs at the top for users to

self-select whether they are ―New to 3D‖ or ―Familiar with 3D‖.

This will guide them to choose the proper navigation widget.

Next, if we know what type of navigation task the user wishes to

conduct, we can customize both which tools are available (and as

importantly, which are not available) and the behavior of the

individual tools. This is particularly useful for novices who can

easily get into trouble. In general we distinguish between two high

level navigation tasks: ―viewing an object‖ and ―touring a

building‖ (see Figure 4) and offer a total of 6 different wheels.

For novices, the View Object navigation wheel offers only four

tools: Center, Zoom, Orbit and Rewind. With the Center tool,

users can interactively place the pivot point by picking a point on

the model and this point is moved to the center of the 3D canvas.

The Zoom tool performs a ―center of canvas‖ zoom at this pivot

point. Orbit operations occur about the pivot point as well. This

combination ensures that the 3D model remains visible at all

times. Note that we do not offer a Pan operation as this can cause

the 3D model to move off of the screen by excessive panning

often leading to confusion about the location and behavior of the

pivot point and subsequent operations that use the pivot point. In

9

addition, point zoom (i.e. zooming at the current cursor location)

is not offered as this also can cause the 3D model to easily fall

outside the viewing region by conducting a zoom in open space or

by a subsequent orbit operation. Again, safety is achieved by the

combination of tools and keeping the pivot point on the model

surface. Notice also that the layout of this navigation wheel has

the Orbit tool occupying ¾ of the outer region and so, is larger

than the other tools. This prominence signals to the user that Orbit

is more important and more frequently used than the other tools.

Also for novices, the Tour Building navigation wheel offers only

four tools: Forward, Look, Up/Down and Rewind. With the

Forward tool, users click on the 3D model and move towards that

point. If they click and release, they are brought 50% of the way

to the point they selected on the 3D surface using a ½ second

animation. Alternatively, if they click and drag, a 3D slider is

presented (see Figure 8) where they can move from their current

position to the surface. They are constrained to not move more

than 95% towards the front surface and are also able to move

backwards as well (we shoot a ray behind them for collision

detection to prevent them from going backward through a wall).

The Forward tool in combination with the Look tool (which

mimics head movement while a person is stationary) allows users

to effectively and safely move around the space. Note that, for

example, the Orbit tool is not offered as this often causes

unexpected and disastrous results for novices when used inside a

3D model. As a convenience we introduced the Up/Down tool

which acts like an elevator and provides a graphical slider to

allow the user to adjust their height in the scene (see Figure 7).

This tool is often more intuitive for novices than using a

constrained Pan operation. In terms of layout, the Forward tool

occupies ¾ of the outer region and is larger than the other tools to

indicate its importance and ease of access.

Figure 4: Six navigation wheels whose tool collection, tool

placement and size are based on a user‘s task and skill level.

The Full (Combined) navigation wheel (see Figure 4) is designed

for more advanced users who are already familiar with working

and navigating in 3D. In this wheel we offer tools for both ―object

inspection‖ and ―touring a building‖. Specifically, the collection

of tools consists of: Orbit, Zoom (point zoom), Pan, Center, Look,

Up/Down, Walk (instead of Forward) and Rewind. The more

common tools are on the exterior region (Pan, Zoom and Orbit)

which are larger and more easily accessed. The Walk tool offers

the ability to simultaneously adjust the user‘s movement speed

and viewing direction. With this tool, we found it important to

warp the cursor to the center of the screen and create a dead zone

region where no movement occurs. This properly orients the user

to better predict the walk behavior.

For more advanced users, we offer miniaturized versions of the

large navigation wheels for faster tool access and to have a

smaller visual footprint. The ―mini wheels‖ (see right-hand

column of Figure 4) are roughly the size of the cursor and replace

the arrow cursor [Fitzmaurice et al. 2008]. Note also that we

upgrade some of the individual tools in the mini wheels. For

example, instead of offering the Forward tool, we use a Walk tool

in the ―Mini Tour Building‖ wheel.

4.3 Orientation Awareness

Another common problem we have observed with new-to-3D

users is loss of orientation. This problem manifests in some

different ways. One surprising but common problem is what we

call ―3D amnesia‖; users seem to forget where they are in 3D.

For example, in observing some skilled Photoshop (2D) users, we

found that some misinterpreted 3D scenes. For example, when

first shown a ¾ perspective view of a box and then switched to a

side view of the box (by clicking on a ―side view‖ icon) without

any animated rotation between the two views, users

misinterpreted the results. Typical comments would be: ―my box

disappeared and there‘s only a square now‖. Clearly for some

users, they were confounded by their familiarity with 2D

applications and had a difficult time understanding and realizing

that there were hidden elements in the depth dimension. Once

they were told, or realized that the object was three dimensional,

users requested different views of the object not by specific view

naming conventions like ―front view‖ or ―bird‘s eye view‖, etc.

but by spatial relationships relative to their current view. For the

box example, participants stated that they wanted ―to look at the

side around the edge‖ or ―go around to the back side.‖

Another way disorientation manifests itself is in the commonly

observed problem where the user navigates to a view without

understanding how they got there (and how to get back) and hence

lose their orientation. When the part of the 3D scene visible on the

screen is very sparse (e.g. an all black color because the user is

looking at the underside of a landscape) the view offers no clues

as to what they are looking at or where they are looking from and

so, users become disoriented.

To improve orientation awareness, we developed a 3D widget

called the ViewCube (Figure 5). The ViewCube is a cube-shaped

widget placed in the corner of the screen that serves as a proxy

object for the 3D scene being viewed (see Figure 9). No matter

where the user navigates or what view they switch to, the

ViewCube, shows the orientation of the scene‘s sides (top,

bottom, left, right, back, front) relative to the current viewpoint.

Figure 5: ViewCube showing orientation for: (a) Top-Front-

Right view, (b) view from Bottom looking up, and (c) a view
when the scene or object is upside down.

Note that the ViewCube provides information beyond that

available from the typical ground plane grid where a user may be

able to infer the height from which they are looking at the ground

plan but not from which side of the grid plane they are looking.

The typical ‗xyz‘ triad often shown in 3D scenes can be used to

infer the current orientation but the user is still left to infer how

10

these mathematical abstractions relate to their scene and

orientation. We believe the ViewCube proxy representation of the

scene preserves the user‘s sense of orientation much better than

the grid and triad. Later we describe how the ViewCube serves as

a view switching controller. Also see [Khan 2007] for a complete

description and evaluation of the ViewCube.

4.4 Enhanced Feedback

We found that some particular types of visual feedback greatly

enhance ―safety‖. The first, and perhaps most critical feedback, is

to explicitly display the navigation pivot point in the scene.

4.4.1 Pivot Point. Typically in 3D applications many of the

navigation operations are based on or affect the pivot point but it

is usually not displayed. However, we have observed that this lack

of display leaves many users unaware of the existence and effect

of the pivot point placement. This in turn can result in some of the

most extreme confusion.

For example, the pivot point for the orbit function is generally at

the center of the scene or at the center of the currently selected

object. When this is the case, turning an object using the orbit

command results in the object staying in view and the user having

the sensation that they are ―orbiting‖ around the object.

However, there are many common operations or situations that

result in the orbit pivot point being located away from the center

of the scene or off of the center of the selected object and this can

result in great confusion. For example, (see Figure 1i) suppose the

pivot point is located at the extreme left side of the screen in the

scene. A user clicks and drags to perform an orbit operation which

results in an orbit around a very large radius. While this

mathematically makes sense, to a new user, unaware of the

displaced pivot point (or even the existence of a pivot point) the

orbit movement appears to make the user zoom in/out from

model. We have observed that users become confused and report

things like ―oh, I must have picked zoom by accident‖, ―I thought

I knew how orbit worked, but now…‖. The net result is that these

types of perceived error states confound learning and create a bad

experience for the user.

To combat this, we have made the pivot point a visibly labeled

green-ball in the scene with visual hints about its depth in the

scene relative to the model (i.e. inside, outside or on the surface of

a 3D model). Furthermore, the green-ball is wrapped in three

orthogonal ―belt lines‖ to make any rotation of the ball

perceivable (see Figure 6).

When we introduced this feature, it had an immediate positive

effect in all of our user tests. Users immediately understood the

role of the pivot point (―seems to revolve around that ball‖) and

confusions between commands as described above were

eliminated. We introduced the visible pivot point at the same time

as allowing the user to move the pivot point with the center

command (described previously). Thus we saw that once users

could see and move the pivot point, they could successfully

experiment with it, and place it at different spots to see the effect.

This resulted in very positive experiences where users quickly

learned the basic role of the pivot point and developed strategies

for using it effectively.

The green-ball also has a special behavior during navigation

commands. For the Zoom and Forward commands, as the user

moves forward or zooms in, the pivot point grows/shrinks in size

accordingly to give a strong visual clue as to the type of

movement that is occurring. It also becomes transparent as it

becomes larger to reduce the occlusion of the view. Once the

command is completed the green-ball disappears and is resized to

its original size on the screen for the next operation.

Figure 6: Visual appearance of the green-ball pivot point: (a) in
front of a surface –fully visible, (b) on a surface –partially

occluded, and (c) behind a surface –fully occluded.

4.4.2 Sliders. Another type of feedback that we believed would

reduce confusion and user errors was to provide feedback on

dragging directions. Typical 3D applications implement GUI tools

such as orbit and pan where dragging in the 3D content window

operates the tool. These particular tools use both dimensions of

mouse movement and a mapping between how one moves the

mouse (up/down, left/right) which is generally known in the case

of pan, or quickly learned for orbit.

However, for tools such as the Up/Down tool, we present a

graphical slider on mouse-down which simplifies and instructs the

user how to operate the tool (see Figure 7). For example, the

vertical slider indicates up/down mouse input, the labels denote

the range available, the slider signals the current altitude, and the

ghosted slider thumb shows the initial altitude for additional

orientation.

Figure 7: Up/Down tool slider: (a) initially activated, (b) as the

cursor is dragged up or (c) down. A ghost slider shows initial

position.

Figure 8: Forward tool ―perspective‖ slider: (a) initial state, (b)

50% and (c) 90% to target surface.

We discovered that more ambiguous tools such as the Forward

tool require additional assistance in relating the direction of user

input to the 3D scene motion. Thus we introduced a perspective

slider (see Figure 8). When the user clicks on the 3D model with

the Forward tool active, the green-ball is placed on the target

surface. Then the top of the perspective slider is placed on top of

the green-ball. Releasing the mouse causes an animation to move

towards the green-ball by 50% of this distance. During this

navigation animation, the perspective slider remains visible and

the slider moves in unison (see Figure 8b). Alternatively, a user

can drag the mouse and move forward or backwards by any

percentage. Drawing the slider with a perspective foreshortening,

11

and having the thumb size change appropriately, signals depth

information to the user and better relates their input actions to the

3D scene motion.

In our subsequent user testing, the benefits of this explicit

feedback were immediate and we observed users now had little

trouble learning to use these tools.

4.4.3 Labels vs. Icons. Through our studies we have found that

new-to-3D users can get distracted when trying to read graphical

icons that attempt to identify navigation tools. In fact, we noticed

that some users were distracted by attractive toolbar icons and

would get into trouble by picking them. For example, in our

commercial application testing, one attractive tool icon happened

to be ―create and manipulate a 3D cutting plane‖. When selected

in the normal exploration of available tools, this tool would really

confuse the user and severely contaminate their mental model of

how the navigation tools worked.

Our philosophy has been to use text labels to describe the tools

instead of graphical icons. Thus, our navigation wheels all use

text labels instead of icons to label the individual tool wedges. We

believe that their functionality can be more readily associated and

consumed by users learning a new system. In contrast, the

graphical icons start as, essentially, a foreign language or notation

that the user must learn.

In addition, we have found that users rarely monitor the shape and

appearance of the cursor. Perhaps this is due to the fact that often

times a cursor is not updated, changes to a wait cursor, or the user

is focusing on the application data. Also, it is another graphical

symbol that must be translated and understood in the mind of the

user. Thus, we provide textual cursor labels to reinforce the

selection of the current tool and we have found this to be very

effective in our user studies.

Lastly, we have found that enhancing feedback can be as simple

as providing helper text messages during tool usage to guide the

user through the learning stages. For example, if the user clicks

down in open space while in the Center tool (which is invalid), we

present the helper text ―Click or drag on model to set pivot‖ until

the user drags the cursor over a valid part of the 3D model.

4.5 Pre-Canned Navigations

We have found that for novices, since freeform 3D navigation can

be difficult and may require the use of several different tools, at

times the best way to improve the experience is to reduce the need

for freeform navigation. Thus, we offer facilitators such as the

ViewCube which allows users to quickly get to standard views. It

can be dragged on, or the faces, edges or corners can be clicked

on, to easily orient the scene to the corresponding view. Once a

component of the ViewCube is selected, the system smoothly

animates to the new view to allow the user to stay oriented. When

on a face view, additional triangle elements appear to offer pre-

canned navigation to adjacent faces. Lastly, a home icon is always

available to smoothly transition the user to a safe preset view.

Secondly, we offer ShowMotion [Burtnyk et al. 2006], a system

to create a collection of important views (i.e. ―shots‖) and easily

attach transition effects (such as fade-to-black) and camera

motions (such as pan, zoom, crane-up, etc.). These ShowMotion

shots are represented as thumbnail icons and collected in a strip

along the bottom of the 3D canvas (Figure 9). They can be named

and grouped into sets. This allows users to quickly create and

organize a collection of important views. Most importantly,

ShowMotion provides users a visual catalog of important views

that they can click on and, consequently, move to and see the 3D

data presented not as a static image but using motion. Thus, their

freeform 3D navigation is replaced with pre-canned high quality

camera motion.

Figure 9: 3D canvas with ShowMotion system shown at the

bottom and the ViewCube in the top right corner.

4.6 Constraints (Error Prevention)

A number of constraints have been added to our safe 3D

navigation system to prevent errors. As mentioned earlier,

providing only a subset of navigation tools which are selected

based on user experience and the navigation task can be quite

effective. For example, not offering the Orbit tool when new-to-

3D users navigate through a building prevents the scene from

―flying away‖.

More conventionally, the navigation tools themselves offer

constraints. For example, in the Forward Tool, we prevent the

user from easily moving through walls. The Up/Down slider has

limits imposed on how high or low the user can move based on

the bounding box of the 3D model. Zooming in the View Object

wheel has a maximum and minimum object size so that the object

is always visible. Lastly, the Pan tool shoots a ray into the scene

and adjusts the algorithm to keep the cursor on the initial click

down point on the 3D geometry to imitate 2D panning where the

cursor and the image being panned are locked together.

The design of the green-ball and its placement algorithms serve as

additional error prevention mechanisms. For example, preventing

the pivot point from moving off screen helps users understand and

predict the interaction behavior. When a user places the pivot

point on the 3D model, the system attempts to keep it ―sticky‖ and

moves the pivot point along with the 3D model. If that part of the

model moves off screen, the pivot point is centered in the canvas

but keeping the same depth level. These designs, in particular,

making the pivot point visible, allow the user to see the

relationship between mouse movement and tool action.

Another technique we have adopted to improve a user’s first

experience and to improve learning is ―cursor wrapping‖. We

observed that many users became confused about how a particular

navigation tool works when dragging the cursor and hitting the

edge of the screen. The tool would, in their mind, stop working

and we would get comments like ―this [tool] seems to have quit

working…‖ or ―I thought I knew how this worked but now I’m

not so sure…‖ We believe the root cause of the problem is that

users are paying attention to the movement of the scene (rightly

so) and not paying attention to the location of the cursor once they

start dragging. Since the mouse is still free to move even though

the cursor is against the display edge, confusion sets in.

Subsequent user testing showed that a very effective fix for this

12

problem was ―cursor wrapping‖ where we essentially remove the

typical screen edge constraint. When the cursor hits the edge of

the 3D canvas, we warp the cursor over to the opposite side of the

3D canvas and continue movement (see Figure 10). We were

surprised how effectively cursor wrapping eliminated this type of

confusion and also how users did not even notice or find the

warping of the cursor confusing or out of the ordinary –lending

more evidence that users are not attending to the cursor once they

start moving in the scene.

Figure 10: Cursor wrapping from bottom to top when moving

the cursor downwards (captured in time from left to right).

4.7 Error Recovery

We observed in our user studies that once new-to-3D users get

into trouble while navigating, they try to get out of trouble by

navigating. For example, a user accidentally gets to an ―empty

view‖ using orbit. They then try to find their model and get back

to a view of something by trying to zoom out or by panning. In

many cases, if their belief about where they were was wrong, this

quite often made the situation even worse.

One might expect that previous experience with other software

applications such as word processors or web browsers would lead

users to request ―recovery‖ features found in those applications

such as ―undo‖ or ―home‖. However, we noted that users did not

look for or ask for these types of functions when they were

disoriented. This was especially poignant when we added the

ViewCube with its ―home‖ function but users who got into very

difficult 3D navigation error states still ignored the ViewCube and

continued to struggle with navigation tools or gave up on the task

altogether. Again, once a user gets in trouble, they attempt to use

the same tool (which is immediately at hand) to get out of trouble.

With this in mind we introduced the Rewind tool into the wheels

to try to get undo and home type of functionality immediately ―at

hand‖. Figure 4 shows the Rewind tool button in every wheel. The

Rewind tool works as follows: when a user presses on the Rewind

tool in the wheel, a thumbnail strip of the history of a user‘s

navigation (segmented according to drag events) appears at the

location of the cursor. The user can then drag to the desired

thumbnail. As they drag over each thumbnail the scene does a

smooth animated transition to the view associated with the

thumbnail. In effect, users are able to ―scrub‖ back and forth in

their navigation history. Also, just a single click on the Rewind

tool moves the user back a single ―step‖ to the previous view.

The good news in our user testing was that most users found and

understood the Rewind tool very quickly when placed in the

wheels. The bad news was that despite being made aware of

Rewind, most new-to-3D users still used a strategy of trying to

manually reverse their navigation when they got into trouble.

However, as they grew more comfortable they began to use

Rewind. Expert users adopted a ―use rewind‖ strategy almost

immediately after learning about the tool.

Figure 11: Using the Rewind Tool. Dragging the cursor left,

reverses the user‘s navigation in a smooth continuous fashion.

The thumbnail strip provides visual history guidance.

While applications often have a navigation queue to undo/redo

camera events, we found that they are not very robust. For

example, they are often represented as two small icons

somewhere on the bezel of the view which offer only discrete

navigation event traversal. Often the transaction cost of accessing

the tool and the user not knowing how they segmented their

navigation make this facility rarely used. In contrast, we promote

the Rewind tool as a first class tool, have it readily available on

the navigation wheel, allow continuous and discrete history

traversal and use thumbnails as visual history guidance.

Finally, we note that new-to-3D users often do not immediately

use Rewind to get out of trouble and that this indicates that

Rewind cannot be used as the cure-all for navigation problems.

Thus our emphasis has been on tools that prevent errors and help

users to learn how the tools work as quickly as possible.

5 Usability

The source of our observations and conclusions made above are

from the research and development of these techniques, which

took place over a two year period, in the context of a product

development process. The goal of our work was to add these

navigation controls into the next product release of six

commercial 3D CAD applications. This would make it easier for

new-to-3D users to learn 3D navigation and for experienced 3D

users to have better navigations tools. Additionally, these tools

would be the same across applications so an experienced user

could easily transfer their 3D navigation skills from one

application to another.

We conducted observational usability studies on approximately 55

individuals trying out various design variations of our tools as we

refined the design. The type of user varied from new-to-3D users

to very experienced (professional) 3D users. Typically the new-to-

3D users had some computer experience with office automation

software. The experienced 3D users were a range of CAD

professionals from mechanical engineers to architects.

We asked users to ―think aloud‖ and typically spent 45 minutes

asking them to attempt particular navigation tasks or simply to

explore and navigate around different types of models. Typically

a group of four interaction designers watched the session via

video connection and analyzed the behaviors and results.

The previous sections have described the major specific results we

observed. In general, over the course of testing and modifying for

new-to-3D users, we were able to move from very error prone and

unsuccessful navigation sessions to sessions where the users were

13

successfully completing the tasks without requiring tester

intervention to recover from errors. Experienced 3D users,

typically in our early user tests, reported they would still prefer

the navigation tools of their favorite or working 3D application

(e.g. 3D Max, Inventor, etc.). By the end of testing, experienced

users typically reported that they ―definitely would learn the

tools‖ as they seemed ―really promising‖. Moreover, some

particular tools like Rewind and Walk were highlighted as ―got to

have!‖ A small number of expert users (1 in 10 in our last series

of tests) quickly understood and learned the tools but struggled to

overcome their habituated behaviors of traditional tool bar tools

—they involuntarily tried to pick a tool off of the wheel and then

move away from the wheel to apply it. This indicates that our

tools may be easy to learn but still, for some very skilled users,

some habituated motor actions will have to be unlearned.

Our techniques were also reviewed and tried by at least 12

product designers for the target products. The designers are

typically very experienced and savvy 3D users. In general

feedback was very positive, and, like our tested expert 3D users,

some functions like Rewind and Up/Down were very welcome.

We were also surprised that some of these designers noticed that

we were constraining the pivot point in some way. For example,

one designer reported to us: ―you are doing something very clever

with pivot point so I don‘t get into trouble‖. Finally, this group of

product designers was extremely enthusiastic about our power-

user ―mini-wheels‖ as they had already become experienced

wheel users and welcomed the miniaturization.

6 Conclusions

Our goal was to have users who are ―new to 3D‖ experience a

productive and pleasurable first impression when navigating in

3D. The initial user studies showed that new-to-3D users can get

into navigation trouble very quickly (within 30 seconds) and once

in trouble, have a hard time getting back to a known, comfortable

viewing state. By applying the seven properties outlined above,

we have shown that a significant advance can be made in offering

a ―safe 3D navigation‖ experience.

Clearly there are some limitations with our approach. For

example, users could bypass the First Contact dialog, pick the

wrong wheel for the wrong navigation task, get confused over the

tracking menu paradigm, and be annoyed with the tool subsets.

Moreover, our design has small learning discontinuities when a

new-to-3D user transitions to an intermediate 3D user by

changing some of the tools and tool behavior. In practice, we have

found this disruption to be very minimal.

Future research would focus on improving the navigation tools to

detect and react to the 3D geometry. While we have some of this

―smart navigation‖ working in our lab, it utilizes the GPU which

is often different or not available on the wide range of computers

on which commercial applications must run.

While some of our seven properties may sound obvious, it is how

intensely and richly each one is supported that constitutes a better

and safer navigation system. For 3D navigation in CAD and

similar application domains to be more widely adopted, as an

industry we must evolve the tools to be more approachable and

less brittle to ease 2D users into the joys of 3D.

Acknowledgments

We would like to thank the product teams at Autodesk involved in

this project, especially Thomas White, Michael Glueck, Ruslana

Goncharenko, Ryan Schmidt, Lynn Miller, Desiree Sy, John

Schrag, Tekno Tandean, Sean Zhang, Jose Madeira Garcia, Elena

Fadeeva, Charles Haughey, Paul Hanau, Tom Vollaro, Darin

Hughes, Milan Sreckovic, Pam Polizzi, Mark Petit, and Larry

Phillps.

References

BALAKRISHNAN, R. AND KURTENBACH, G. 1999. Exploring

bimanual camera control and object manipulation in 3D

graphics interfaces. In ACM CHI. pp. 56-63.

BARES, W. AND KIM, B. 2001. Generating Virtual Camera

Compositions, In Proceedings of ACM IUI’01, pp. 9-12.

BARES, W. AND LESTER, J.C. 1999. Intelligent Multi-Shot

Visualization Interfaces for Dynamic 3D Worlds. Proceedings

of ACM IUI ’99, pp. 119-126.

BOWMAN, D., JOHNSON, D. AND HODGES, L. 1999. Testbed

environment of virtual environment interaction. In Proceedings

of ACM VRST. pp. 26-33.

BOWMAN, D., KOLLER, D. AND HODGES, F.H. 1997. Travel in

immersive virtual environments. IEEE VRAIS'97 Virtual Reality

Annual International Symposium. pp. 45-52.

BURTNYK, N., KHAN, A., FITZMAURICE, G., AND KURTENBACH, G.

2006. ShowMotion: Camera Motion based 3D Design Review,

In Proceedings of ACM I3D 2006, pp. 167-174.

BURTNYK, N., KHAN, A., FITZMAURICE, G., BALAKRISHNAN, R.

AND KURTENBACH, G. 2002. StyleCam: Interactive Stylized 3D

Navigation using integrated Spatial and Temporal Controls, In

Proceedings of ACM UIST 2002, pp. 101-110.

CHAPMAN, D. AND WARE, C. 1992. Manipulating the future:

predictor based feedback for velocity control in virtual

environment navigation. ACM Symposium on Interactive 3D

Graphics. 63-66.

CHRISTIANSON, D.B., ANDERSON, S.E., HE, L.-W., WELD, D.S.,

COHEN, M.F., AND SALESIN, D.H. 1996. Declarative camera

control for automatic cinematography. Proceedings of AAAI '96

(Portland, OR), pp. 148-155.

DRUCKER, S. AND ZELTZER, D. 1995. CamDroid: A System for

Implementing Intelligent Camera Control. In ACM I3D, pp.

139-144.

FITZMAURICE, G., KHAN, A., PIEKE, R., BUXTON, B. AND

KURTENBACH, G. 2003. Tracking menus. ACM UIST 2003.

pp.71-79.

FITZMAURICE, G., MATEJKA, J., KHAN, A., GLUECK, M.,

KURTENBACH, G. 2007. PieCursor: Merging Pointing and

Command Selection for Rapid In-place Tool Switching. To

appear in ACM CHI 2008.

GALYEAN, T. 1995. Guided navigation of virtual environments.

ACM Symposium on Interactive 3D Graphics. pp.103-104.

GLEICHER, M. AND WITKIN, A. 1992. Through-the-lens camera

control. ACM SIGGRAPH 92. pp. 331-340.

HANSON, A. AND WERNET, E. 1997. Constrained 3D navigation

with 2D controllers. IEEE Visulization. pp. 175-182.

HE, L., COHEN, M. AND SALESIN, D. 1996. The virtual

cinematographer: a paradigm for automatic real-time camera

control and directing. ACM SIGGRAPH 96. pp. 217-224.

14

IGARASHI, T., KADOBAYASHI, R., MASE, K. AND TANAKA, H. 1998.

Path drawing for 3D walkthrough. ACM UIST. pp. 173-174.

KHAN, A. KOMALO, B., STAM, J., FITZMAURICE, G. AND

KURTENBACH, G. 2005. HoverCam: interactive 3D navigation

for proximal object inspection, In Proceedings of ACM I3D, pp.

73-80.

KHAN, A., MORDATCH, I., FITZMAURICE, G., MATEJKA, J.,

KURTENBACH, G. 2007. ViewCube: A 3D Orientation Indicator

and Controller. In Proceedings of ACM I3D 2007.

MACKINLAY, J., CARD, S. AND ROBERTSON, G. 1990. Rapid

controlled movement through a virtual 3D workspace. ACM

SIGGRAPH 90. pp. 171-176.

NIEUWENHUISEN, D., KAMPHUIS, A. AND OVERMARS, M. H., 2007

High quality navigation in computer games, Science of

Computer Programming, Vol. 67, 1, Elsevier North-Holland,

Inc, pp. 91-104.

PHILLIPS, C.B., BADLER, N.I., AND GRANIERI, J. 1992. Automatic

Viewing Control for 3D Direct Manipulation. In ACM I3D, pp.

71-74.

PIERCE, J. S., CONWAY, M., VAN DANTZICH, M., AND ROBERTSON,

G. 1999. Toolspaces and glances: storing, accessing, and

retrieving objects in 3D desktop applications. In ACM I3D, pp.

163-168.

STEED, A. 1997. Efficient navigation around complex virtual

environments. ACM VRST. pp. 173-180.

STOAKLEY, R., CONWAY, M. AND PAUSCH, R. 1995. Virtual reality

on a WIM: Interactive worlds in miniature. ACM CHI. pp. 265-

272.

TAN, D., ROBERTSON, G. AND CZERWINSKI, M. 2001. Exploring 3D

navigation: combining speed-coupled flying with orbiting. ACM

CHI. pp. 418-425.

TSANG, M., FITZMAURICE, G.W., KURTENBACH, G., KHAN, A. AND

BUXTON, B. 2002. Boom Chameleon: Simultaneous capture of

3D viewpoint, voice and gesture annotations on a spatially-

aware display. ACM UIST. pp. 111-120.

WARE, C. AND FLEET, D. 1997. Context sensitive flying interface.

ACM Symposium on Interactive 3D Graphics. pp. 127-130.

WARE, C. AND OSBORNE, S. 1990. Exploration and virtual camera

control in virtual three dimensional environments. ACM I3D.

pp. 175-183.

ZELEZNIK, R. AND FORSBERG, A. 1999. UniCam - 2D Gestural

Camera Controls for 3D Environments. ACM I3D. 169-173.

ZELEZNIK, R., FORSBERG, A. AND STRAUSS, P. 1997. Two pointer

input for 3D interaction. ACM I3D. PP. 115-120.

15

16

