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Abstract
Building performance simulation promises to reduce the fu-
ture impact of buildings on the environment by helping ar-
chitects predict the energy demand associated with different
design options. We present a new method for simulating oc-
cupant behavior in buildings, a key phase in the prediction of
energy use. Our method first inputs the recorded activities of
actual building occupants, then randomly generates fictional
schedules with similar behavioral patterns. The main contri-
bution of this work is a mathematical technique in which an
arbitrary set of factors can be used to select plausible activity
types, durations, and numbers of participants during a simula-
tion. A prototype model was implemented to test the method,
and results obtained to date suggest that the generated occu-
pant schedules are believable when compared both qualita-
tively and quantitatively to real occupant schedules.

1 INTRODUCTION
It has been estimated that residential and commercial build-

ings account for 35 percent of global energy demand [1], as
well as a substantial fraction of greenhouse gas emissions. At
the same time, it is widely believed that design improvements
could dramatically reduce the impact of buildings on the en-
vironment. Clarke identifies “ineffective decision-support” as
the key factor impeding the possible realization of 50-75%
reductions in the energy consumption of new buildings, and
30% reductions in that of existing buildings [2]. Our vision
is that advances in building performance simulation will ad-
dress the need for improved decision-support in building de-
sign, allowing architects to conveniently and accurately pre-
dict the energy use associated with different design options.

One of the more daunting aspects of building performance
simulation is the number of different interacting subsystems
that need to be modeled. These subsystems include the equip-
ment in the building, the HVAC system, and the outdoor envi-
ronment, among others [3]. Because a building’s energy con-
sumption patterns are largely dependent on the activities of
its occupants, we chose to start our investigation of energy
demand prediction by looking at occupant behavior. Quan-
tifying this behavior is a prerequisite for predicting when a
building’s equipment is likely to be in use, and assessing the

adequacy of its lighting conditions, air temperature, and air
quality. As part of a long-term collaborative modeling project
[4], our vision is to integrate realistic models of occupant be-
havior with those of other subsystems.

Existing building performance simulation tools typically
use fixed schedules or relatively simple algorithms for mod-
eling occupant behavior. In pursuit of more detailed and ac-
curate predictions, researchers have proposed more sophisti-
cated methods. It has been suggested that the trend towards
flexible work hours will complicate occupant schedules and
compound the need for these new methods [5]. Also, the
emerging focus on sustainable buildings, incorporating pas-
sive air conditioning systems, will likely increase an occu-
pant’s influence over his or her surrounding indoor environ-
ment [6]. Simulations will need to capture these occupant-
building interactions.

Here we present a novel occupant behavior simulation
method. We describe our method as “schedule-calibrated”,
meaning that it first inputs the recorded activities of actual
building occupants, then generates fictional schedules while
striving to reproduce typical patterns of behavior. Several
similar schedule-calibrated methods already exist. We con-
tribute a mathematical technique that can be used to generate
various activity “attributes”. The specific attributes we focus
on in this paper are the task performed, the number of partic-
ipants, and the duration of each activity. Unlike pre-existing
methods, ours allows each generated attribute to depend on an
arbitrary set of “factors”. Examples of factors include the time
of day, the previously-performed task, and the time elapsed
since each task was last performed. Any activity attribute may
also be used as a factor. The generation of various attributes
accommodates more detailed descriptions of human behav-
ior, whereas the use of multiple factors promises to help re-
produce behavioral patterns found in existing data.

Section 2 describes key concepts and reviews related work.
Our proposed occupant behavior simulation method is ex-
plained in Section 3 using a simple example demonstrating
the random selection of plausible tasks. In Section 4 we de-
scribe the actual prototype model. It was developed using the
method of Section 3, but generates multiple attributes, uses a
greater number factors, and discretizes those factors at higher
resolutions. The prototype model was implemented, and sim-
ulation results are presented in Section 5. Finally, Section 6
discusses future work.
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2 BACKGROUND
We use the phrase “occupant behavior simulation” to re-

fer to a computer simulation that generates fictional occupant
schedules. An “occupant schedule” is a description of the be-
havior of a building occupant over the course of a single day.
Each of these schedules takes the form of a chronological se-
quence of consecutive activities, with an “activity” being a
description of an occupant’s behavior during a specific block
of time. Each activity has several associated attributes. At
very least, these attributes should include the “task”, which
identifies the type of activity. We expect each task to be se-
lected from a pre-defined list of possible tasks. For a simula-
tion of an office building, there would likely be one possible
task representing desk work, another possible task for meet-
ings, etc.

Several methods have been proposed to randomly generate
plausible sequences of periods during which an occupant is
either present or absent at a particular location in a building.
While our interest lies in more detailed models of human be-
havior, these methods still satisfy our definition of “occupant
behavior simulation” if the list of possible tasks is to include
only “being present” and “being absent”. Wang proposed that
the durations of presence and absence be exponentially dis-
tributed [7], a convention which assumes that the remaining
time to be spent in a location is independent of the time al-
ready spent there. Both Yamaguichi’s method [8] and Page’s
method [9] also feature this “memoryless” property, but they
differ from Wang’s in that time is advanced by fixed time
steps. Page introduced what we describe as a single influenc-
ing “factor”; specifically, the time of day. With this method, a
simulation is calibrated using real schedules of presence and
absence. If the real schedules tend to include a lunch break
around noon, then the time of day factor allows that pattern
of behavior to be reproduced.

Likely the most sophisticated occupant activity simula-
tion developed to date is Tabak’s User Simulation of Space
Utilisation (USSU) System, described in his 2008 Ph.D the-
sis [10]. In USSU there are many different tasks, and occu-
pants can interact via shared activities such as meetings and
presentations. Unlike Page’s method, USSU is not schedule-
calibrated. Tabak instead conducted an extensive survey, us-
ing questionnaire results to calibrate his model.

The method developed for USSU [10] appears to have
a few disadvantages. One possible concern is that a model
calibrated using survey data might produce less realistic re-
sults than one calibrated using recorded schedules. The col-
lection of the survey data itself is likely to be cumbersome
(Tabak reported that 50 of 166 respondents failed to com-
plete the questionnaire, presumably due to its length). That
said, obtaining real occupant schedules for over 100 people
would almost certainly be even more difficult. The draw-
back that concerns us most is the complexity of the USSU

method. Based on the task performed, Tabak classifies ac-
tivities as “Skeleton Activities” (eg. “give a presentation” or
“do research”), “S-curve Intermediate Activities” (eg. “get a
drink”), and “Probabilistic Intermediate Activities” (eg. “re-
ceive unexpected visitor”). Each type of activity is handled
by a different algorithm, complicating the overall method.

3 PROPOSED METHOD
It seems plausible that the large amount of input data re-

quired by a schedule-calibrated method like Page’s allows
one to get away with relatively simple algorithms. Because
the information contained in the real occupant schedules im-
plicitly distinguishes one task from another, one can avoid
explicit distinctions like those exhibited by USSU. But while
Page’s schedule-calibrated method is compelling for its sim-
plicity, we decided at the outset of our work to avoid the
memoryless property. Intuitively, an occupant’s future behav-
ior should be influenced in part by his or her past behavior.
If one has taken a lunch break only three minutes ago, as op-
posed to three hours ago, one ought to be less likely to have
a meal in the next three minutes. We therefore adopted the
goal of developing a schedule-calibrated method like Page’s,
but with more detailed activities and an enhanced ability to
reproduce observed patterns of behavior.

Recall that activities include attributes like the task, num-
ber of participants, and duration. In our proposed occupant
behavior simulation method, attributes are generated one at a
time using the same mathematical technique. Each attribute
depends on an arbitrary set of factors, which for the time be-
ing must be chosen based on intuition. Intuitively, an occu-
pant’s next task should depend in part on the time of day, so
like Page we might choose the time of day as a factor. Our
method is novel in that it allows for the inclusion of other
factors, the previous task being a notable example. Once one
attribute is generated from a set of factors, that attribute can
itself become a factor for the generation of another attribute.
If one uses the time of day to generate the task, for exam-
ple, one may then use the task as a factor that influences the
activity duration.

Comparing our method to Page’s and its predecessors, it
is through the use of multiple factors that we expect an en-
hanced ability to reproduce behavioral patterns. Also, the
generation of various activity attributes leads to a more de-
tailed representation of occupant behavior. Striving to retain
the simplicity of pre-existing schedule-calibrated methods,
we generate each attribute using the same mathematical tech-
nique. This technique can be broken into four distinct phases:
the population of a set of histograms using real occupant
schedules; the smoothing of those histograms; the normaliza-
tion of the smoothed histograms; and finally the extraction of
attribute values. Each phase is explained in detail below.



Figure 1. Histograms after the shaded bins were populated with the Table 1 data (empty bins represent values of 0).

3.1 Histogram Population
Throughout Section 3, an ongoing example will be used in

which we generate a single activity attribute: the task. To sim-
plify matters, we will have only four possible tasks, named
“off”, “work”, “meet”, and “eat”. We will also use only two
factors, the time of day (TOD) and the previous task (PVT).

Observe the two real occupant schedules in Table 1. Each
row describes a separate activity. An activity begins at its as-
sociated time, and ends at the time when the subsequent ac-
tivity begins. The “NPO” column lists the “number of partic-
ipating occupants”. On Day 0, for example, the occupant had
a meeting with four other occupants at 10:02 AM.

Table 1. Two real occupant schedules.
Day 0 Day 1

Time Task NPO Time Task NPO
8:45 AM work 1 9:13 AM work 1
10:02 AM meet 5 10:41 AM meet 2
11:17 AM work 1 11:02 AM work 1
12:10 PM eat 3 1:16 PM eat 1
1:01 PM work 1 1:55 PM work 1
5:47 PM off 1 4:32 PM meet 2

4:51 PM work 1
4:59 PM off 1

Our goal is to automatically generate tasks during a simu-
lation, producing schedules that resemble those in the table.
As mentioned earlier, the first step is to populate a set of his-
tograms. Figure 1 shows five such histograms after they are
populated using the data in Table 1. The histograms are all
two-dimensional, as we have selected two factors for this ex-

ample. There is one column for each of the four possible pre-
vious tasks, and the time of day factor is discretized such that
each hour of the day has its own set of histogram bins.

Every activity in Table 1 contributes a value of 1 to both
A0 and one of the other four B0 histograms. Each B0 his-
togram is associated with a single “feature”, and in this spe-
cific example we happen to have one feature per possible task.
The general mathematical technique we present allows one
to choose any number of features, however, and each fea-
ture can be associated with any quantity. For the first activ-
ity of Day 0, the time (8:45 AM) fits into the “8 AM to 9
AM” slot and the previous task is assumed to be “off”. Thus
A0[“8 AM”,“off”] = 1, as shown just under the top-left cor-
ner cell of Figure 1. Because the task performed at 8:45 AM is
“work”, we also add 1 to the corresponding bin of the “work”-
specific feature histogram (B0[“8 AM”,“off”][“work”]). It so
happens that on both Day 0 and Day 1, the occupant tran-
sitions from the “work” task to the “meet” task between 10
AM and 11 AM. We therefore have A0[“10 AM”,“work”] =
B0[“10 AM”,“work”][“meet”] = 2. On Day 1, the occupant
transitioned away from the “work” task at 4:32 PM and 4:59
PM, giving us A0[“4 PM”,“work”] = 2. Note that the 4:32 PM
activity contributes to B0[“4 PM”,“work”][“meet”], whereas
the 4:59 PM activity affects B0[“4 PM”,“work”][“off”].

3.2 Smoothing
The sparseness of Figure 1 is a problem, as we will eventu-

ally need to extract information from the bins that are cur-
rently empty. This problem will occur in practice, even if
hundreds of real occupant schedules are used to populate the
histograms, for the use of additional factors discretized at



Figure 2. Histograms after 1 smoothing iteration, with initially-populated bins shaded (“0.00” values are small but positive).

higher resolutions will increase the total number of bins. It
is therefore necessary to “smooth” the data, propagating val-
ues across neighboring bins to reduce the sparseness.

Here we describe an iterative smoothing algorithm re-
quiring one “smoothing parameter” α〈factor〉 for each factor
〈factor〉. These smoothing parameters are all non-negative,
and their sum is at most 1. The larger a smoothing parameter
for a certain factor, the smoother the final data across neigh-
boring bins along the axis associated with that factor.

The first step in each smoothing iteration i is to define a set
of coefficients Ci, one for each histogram bin (identified by
〈bin〉) and each factor.

Ci[〈bin〉][〈factor〉] =

α〈factor〉
n〈factor〉

· ∑
〈factor〉

α〈factor〉

∑
〈factor〉

α〈factor〉 +
√

Ai[〈bin〉]

If a bin has been heavily populated, then trusting its infor-
mation, we lessen the effect of the smoothing by including√

Ai[〈bin〉] in the denominator. The variable n〈factor〉 is the
number of neighboring bins along the axis associated with
〈factor〉. For factors with continuous values like the time of
day, the neighboring bins are the two adjacent bins (or the one
adjacent bin if we are at the edge of a histogram). For discrete
factors like tasks, all other bins along the axis are neighbors.

With ci we record the fraction of each bin’s value that will
be preserved through the smoothing iteration.

ci[〈bin〉] = 1 − ∑
〈factor〉

(
n〈factor〉·Ci[〈bin〉][〈factor〉]

)
In a single iteration, convolutions are performed separately

for each histogram using the same set of coefficients. Below,

Xi represents any of the histograms for iteration i. We use
〈bin∗〉 to denote the neighboring bin located at a displacement
〈offset〉 along the axis associated with 〈factor〉.

Xi+1[〈bin〉] = ci[〈bin〉]·Xi[〈bin〉]
+ ∑
〈factor〉

∑
〈offset〉

(Ci[〈bin〉][〈factor〉]·Xi[〈bin∗〉])

Continuing our simplified task generation example, we let
αTOD = 0.14 and αPV T = 0.06. Figure 2 shows the histograms
of Figure 1 after one iteration of smoothing. Serving as a
demonstration of the algorithm, the following is a derivation
of A1[“4 PM”,“work”]. Note that its value is shown as 1.96 in
the figure.

First, we calculate the smoothing coefficient associated
with the time of day factor. Because this factor is continuous,
there are two neighbors (nTOD = 2).

C0[“4 PM”,“work”][“TOD”]

= αTOD
nTOD

· αTOD + αPVT
αTOD + αPVT +

√
A0[“4 PM”,“work”]

= 0.14
2 ·

0.14 + 0.06
0.14 + 0.06 +

√
2

= 0.0086730 . . .

The smoothing coefficient associated with the previous
task is calculated in a similar fashion. In this case, because
tasks are discrete and there are four in total, there are three
neighbors (nPV T = 3).

C0[“4 PM”,“work”][“PVT”] = 0.0024780 . . .



Figure 3. Normalized arrays, with initially-populated bins shaded (values shown in bold are referenced in the text).

The c0 coefficient is obtained as follows.

c0[“4 PM”,“work”] = 1
− nTOD·C0[“4 PM”,“work”][“TOD”]
− nPVT·C0[“4 PM”,“work”][“PVT”]

= 0.97522 . . .

Using A1 in place of Xi+1, the convolution equation gives
us the value shown in Figure 1.

A1[“4 PM”,“work”]

= c0[“4 PM”,“work”]·A0[“4 PM”,“work”]
+C0[“4 PM”,“work”][“TOD”]·A0[“3 PM”,“work”]
+C0[“4 PM”,“work”][“TOD”]·A0[“5 PM”,“work”]
+C0[“4 PM”,“work”][“PVT”]·A0[“4 PM”,“off”]
+C0[“4 PM”,“work”][“PVT”]·A0[“4 PM”,“meet”]
+C0[“4 PM”,“work”][“PVT”]·A0[“4 PM”,“eat”]

= 1.9616 . . .

We terminate the smoothing processes after a pre-defined
number of iterations n. If empty bins still remain, one can use
a greater number of smoothing iterations, select lower resolu-
tions on the continuous factors, or supply more input data.

3.3 Normalization and Extraction
After smoothing the histograms, the feature values Bn are

normalized to yield a set of arrays collectively named D. This
is the last step in the calibration process. In our ongoing ex-
ample, normalization means dividing the Bn values by corre-

sponding An values.

D[〈bin〉][〈feature〉] = Bn[〈bin〉][〈feature〉]
An[〈bin〉]

Figure 3 shows the normalized arrays of the example after
9 iterations of smoothing. This information may be used dur-
ing a simulation to generate plausible tasks, a process called
extraction. Suppose that the current simulated time is 11:30
AM, and a simulated occupant has just completed a “work”
activity. To select the next task, the simulation looks up the
normalized feature values associated with these TOD and
PVT factors.

D[“11 AM”,“work”][“off”] = 0.00 . . .
D[“11 AM”,“work”][“work”] = 0.17 . . .
D[“11 AM”,“work”][“meet”] = 0.55 . . .
D[“11 AM”,“work”][“eat”] = 0.28 . . .

In this case there is roughly a 17% chance that the occu-
pant will continue working, a 55% chance he/she will meet
with other occupants, a 28% chance of taking a break for
food, and very little chance he/she will leave for the day. The
simulation selects the next task at random according to these
probabilities.

Suppose that the occupant completes the “work” activity at
11:45 AM instead of 11:30 AM. In this case, if we choose, we
may interpolate probabilities. The center of the “11 AM to 12
PM” slot is 11:30 AM, a quarter of an hour before the simu-
lated time, and the center of the “12 PM to 1 PM” slot is 12:30
PM, three quarters of an hour after the simulated time. Using
a linear interpolation, the probability that the occupant be-
gins eating is (3/4)·0.28+(1/4)·0.95, or 44.75%. The other
probabilities would be interpolated in a similar fashion.



4 PROTOTYPE MODEL
Different models of occupant behavior may be defined us-

ing the method of Section 3, but with alternative sets of at-
tributes, factors, and features. In a prototype model that we
implemented to test the method, we generate for each activity
its task, number of participating occupants (NPO), and dura-
tion. The same smoothing algorithm is applied in each case;
our implementation uses multi-dimensional arrays to support
an arbitrary number of factors. The histogram population,
normalization, and extraction procedures differ somewhat be-
tween the three generated attributes, as explained below.

4.1 Task Generation
In our prototype, we generated tasks using three factors.

Two of these, the time of day (TOD) and the previous task
(PVT), were used in the simplified example of Section 3. The
third factor is the “task suspension interval” (TSI).

The rationale for using TOD as a factor is that the timing
of arrivals, departures, and lunch breaks is highly dependent
on the time of day. We discretize TOD into 15-minute inter-
vals, giving us a higher resolution than the 60-minute inter-
vals used in the previous section. We use αTOD = 0.23.

The rationale for the PVT factor is that certain transitions
between tasks are more likely to occur than others. We in fact
chose αPV T = 0, which prevents a transition from occurring in
the simulated schedules if it is not found in the real schedules.
With αPV T = 0, one would not expect two washroom breaks
to be generated back-to-back.

The TSI measures the time elapsed since a task was last
performed. Its inclusion as a factor helps reproduce intervals
between tasks. This is useful to spread out washroom breaks,
or coffee/lunch breaks, for example. We adopted a logarith-
mic discretization, with separate bins for task suspension in-
tervals of 0 to 15 minutes, 15 to 15·

√
2 minutes, 15·

√
2 to 30

minutes, 30 to 30·
√

2 minutes, etc. We selected αT SI = 0.02.
Whereas the TOD and PVT factors are scalar values, the

TSI factor requires a separate time interval for each possible
task. This complicates the mathematical procedure demon-
strated in Section 3. When populating a histogram with a sin-
gle activity, or when extracting a set of probabilities, multiple
TSI values must be used to reference histogram bins.

4.2 NPO Generation
To generate the numbers of participating occupants for

each activity, we again use the TOD factor. Because we de-
cided to generate an activity’s NPO after generating its task,
we are able to use the current task (TSK) as the other factor.

We believe TOD might well influence the NPO, as an oc-
cupant taking a break is more likely to have company around
noon than in mid-afternoon. We again discretize the TOD at
15-minute intervals, but now use αTOD = 0.25.

It is obvious that the NPO should depend on the TSK, as a
task representing meetings is more likely to be collaborative
than, for example, a washroom break. A αT SK value of 0 en-
sures that washroom breaks are always treated as individual
activities.

When generating the task in Section 3, we required one fea-
ture per possible result. When generating the NPO, there are
far more possible results. Here we use exactly two features,
one called “sums” and another called “square sums”. For
each activity in the real schedules, we first subtract 1/2 from
the number of participants npo. We add (npo− 1/2) to the
correct bin in the “sums” feature histogram, and (npo−1/2)2

to the same bin in the “square sums” histogram. After n iter-
ations of smoothing, we have for each bin 〈bin〉 the values
An[〈bin〉], Bn[〈bin〉][“sums”], and Bn[〈bin〉][“square sums”].
The normalization equations are as follows.

D[〈bin〉][“mean”] = Bn[〈bin〉][“sums”]
An[〈bin〉]

D[〈bin〉][“variance”] = Bn[〈bin〉][“square sums”]
An[〈bin〉]

−D[〈bin〉][“mean”]2

During a simulation, with the time of day and the current
task known, appropriate mean and variance values can be in-
terpolated from D. We formulate a gamma distribution with
these properties, randomly select a positive value from this
distribution, add 1 to that value, then convert that real number
to a positive integer by rounding down. The result is the NPO.

4.3 Duration Generation
We decided that the duration of an activity should depend

on the time of day (TOD), the task (TSK), and the number of
participating occupants (NPO).

The rationale for the TOD factor is that, for example, an
occupant is less likely to work for several hours continuously
if it is nearly time to leave the office. We again select 15-
minute intervals, and use αTOD = 0.23.

It is obvious that an activity’s duration is highly dependent
on the task; in fact we insist that αT SK = 0. A positive αT SK
leads to absurdly long washroom breaks, as their durations
become influenced by those of other types of activities.

The NPO factor is used because we imagine that an occu-
pant may take a longer lunch break if he/she has company.
We use separate bins for activities with 1 participant, 2 or 3
participants, 4 to 7, 8 to 15, 16 to 31, 32 to 63, and 64 or more
participants. For smoothing, αNPO = 0.02.

Duration generation is similar to NPO generation. We
again use two features, adding recorded durations to one fea-
ture and their squares to the other. This allows us to randomly
generate durations using gamma distributions. As a duration
is a continuous quantity, we do not need to offset or round off
values as we did for the NPO.



5 RESULTS
Ideally, the fictional schedules generated by a our occu-

pant behavior simulation would be indistinguishable from the
real schedules used to calibrate the model. There is no single
“best” metric to determine how well the two sets of sched-
ules resemble one another. Here we present a brief qualitative
analysis of our results, followed by a few statistics. In each
case, the model was calibrated using the same 27 real sched-
ules. These schedules were recorded manually during week-
days by an Autodesk Research employee, referred to in this
section as “the real occupant”. On some days, each activity
was entered into a spreadsheet shortly after its completion. In
other cases the occupant recorded all activities at the end of
the day, aided by a webcam and motion detection software.

Observe the generated schedule in Table 2. The schedule
appears plausible in several regards: the arrival and departure
times; the fact that the occupant spends most of the day doing
desk work; the 6-minute “desk meeting” in the morning; and
the fact that the washroom breaks are spread out and range
from 1 to 4 minutes in duration. The 13-person lunch break
outside the building happens to be consistent with a few of
the 27 real schedules.

Table 2. A generated occupant schedule.
Time Task NPO

9:57 AM work@desk 1
10:19 AM meet@desk 2
10:24 AM work@desk 1
11:37 AM break@washroom 1
11:41 AM work@desk 1
12:01 PM break@sharedroom 1
12:12 PM break@washroom 1
12:13 PM work@desk 1
12:28 PM break@outside 13
1:31 PM break@washroom 1
1:34 PM work@desk 1
2:42 PM break@washroom 1
2:44 PM work@desk 1
4:08 PM break@sharedroom 1
4:13 PM work@desk 1
6:13 PM off@outside 1

The real occupant never left the building and returned
twice in a single day. This pattern of behavior appeared
to be reflected in the generated schedules, presumably due
to the TSI factor that measures the time elapsed since a
task was last performed. But because breaks outside the
building (“break@outside”) were classified as separate tasks
from breaks on site (“break@sharedroom”), the TSI factor
did nothing to prevent the outside break in Table 2 from
being preceded by the break at 12:01 PM. By combin-
ing “break@outside” and “break@sharedroom” into a single

task, a modeler could discourage the generation of multiple
breaks around noon. But on the other hand, one might then
lose the tendency for a 13-person “team lunch” to take place
at a restaurant, or the trend that 5-minute breaks around 4:08
PM tend to occur on site. The more general point is that differ-
ent classification schemes will reproduce different behavioral
patterns, but no single classification scheme will be ideal.

Figure 4 shows profiled probabilities that an occupant can
be found working at their desk. The jagged line was produced
by counting, for each minute of the day, the number of times
the real occupant was recorded performing desk work, then
dividing by the total number of recorded schedules (27). The
smoother line was calculated in the same fashion, but using
10000 generated schedules. The real and simulated profiles
follow roughly the same path, though evidently the simulation
overestimates the probability of desk work around lunch and
underestimates it before and after.

Figure 4. Desk work probability profiles.

Despite the differences between the profiles at certain
hours of the day, the real and simulated time-averaged proba-
bilities of desk work were in fairly close agreement. On aver-
age, the real occupant worked at their desk only 3.4 minutes
longer per day than the simulated occupant (411.6 minutes
total compared with 408.2).

While desk work is typically performed several times per
day, the occurrence of certain other tasks is best measured
over several days. The real occupant took a break outside
on 14 of 27 days, and so the desired probability that the
“break@outside” task occurs in a day is about 51.9%. From
10000 generated schedules, the result was roughly 53.6%.
Given that we are trying to predict human behavior, the er-
ror of 1.7% seems tolerable.

6 FUTURE WORK
Recall that Tabak’s USSU System [10] allowed simulated

occupants to interact with one another, sharing activities such
as meetings and presentations. Although we do quantify the



number of participants for each activity, we have yet to
present a means to utilize this attribute for occupant interac-
tion. For example, suppose our method is used to simulate a
building with 10 occupants over the course of a single day. If
at some point a 5-person activity is generated for one of those
occupants, then the same activity should occur at the same
time in the schedules of 4 of the remaining occupants. So
long as the 10 schedules are generated independently, how-
ever, this is extremely unlikely. Adding interactions between
occupants, such that simultaneously-generated schedules are
inter-dependent, remains important future work.

Discussing the schedule-calibrated method of [9], Page
points out that software users will find it impractical to sup-
ply the large amounts of input data necessary to yield re-
alistic simulated behavior. The problem applies to our own
method as well, and is exacerbated by the possibility that
users will want to populate their simulated buildings with
different types of occupants. Designing a building for soft-
ware company, for example, an architect may wish to perform
simulations with different numbers of junior programmers,
senior programmers, managers, and sales and support staff,
each with their own behavioral patterns. We hope to combine
our method with personas, descriptions of fictional individu-
als, to allow occupant behavior to be customized using only
modest amounts of additional information.

Once we have developed a customizable model of the be-
havior of interacting occupants, we will need to combine it
with models of other subsystems in an effort to predict build-
ing performance. At very least, the occupant behavior model
should influence models of building equipment. If a simu-
lated occupant begins performing desk work, for example,
his/her simulated computer should respond and draw addi-
tional power. It is important to note that interactions can occur
in the opposite direction as well, with other building subsys-
tems influencing human behavior. If an HVAC system pro-
duces an intolerable temperature increase in a working area,
an occupant might respond and move to a different loca-
tion. Alternatively, he/she may open a window, impacting the
HVAC system and potentially the actions of other occupants.
In some cases it may be desirable to allow “exceptional be-
havior”, like opening a window or vacating an uncomfortable
area, to take precedence over the activities generated by our
schedule-calibrated method.

7 CONCLUSION
A number of methods have previously been developed

to simulate the behavior of building occupants based on
the recorded schedules of real occupants. The schedule-
calibrated method we have proposed and demonstrated is no-
table for its flexibility; one can determine the level of detail
with which occupant behavior is modeled by selecting vari-
ous activity attributes, and one can alter the behavioral pat-

terns that get reproduced in a simulation by selecting differ-
ent sets of factors. Tested with our own chosen attributes and
factors, the method yielded plausible fictional schedules with
acceptable statistical accuracy. Future work includes the mod-
eling of interactions between occupants, the customization of
occupant behavior using personas, and the integration of oc-
cupant models with those of other building subsystems in an
effort to predict energy demand.
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