

Searching for Software Learning Resources
Using Application Context

Michael Ekstrand1,2, Wei Li1, Tovi Grossman1, Justin Matejka1, and George Fitzmaurice1

1Autodesk Research
210 King St. East

Toronto, Ontario, Canada, M5A 1J7
{firstname.lastname@autodesk.com}

2GroupLens Research
CS&E Dept., University of Minnesota

4-192 Keller Hall, 200 Union St.
Minneapolis, MN, USA 55455

ekstrand@cs.umn.edu

ABSTRACT
Users of complex software applications frequently need to
consult documentation, tutorials, and support resources to
learn how to use the software and further their understand-
ing of its capabilities. Existing online help systems provide
limited context awareness through “what’s this?” and simi-
lar techniques. We examine the possibility of making more
use of the user’s current context in a particular application
to provide useful help resources. We provide an analysis
and taxonomy of various aspects of application context and
how they may be used in retrieving software help artifacts
with web browsers, present the design of a context-aware
augmented web search system, and describe a prototype
implementation and initial user study of this system. We
conclude with a discussion of open issues and an agenda for
further research.

Author Keywords
Help search, context-based search, software learning.

ACM Classification Keywords
H.5.2 [Information Interfaces and Presentation]: User
Interfaces---training, help, and documentation; H.3.3 [In-
formation Storage and Retrieval]: Information Search
and Retrieval---search process

General Terms
Algorithms, Experimentation, Human Factors

INTRODUCTION
For about as long as there has been software, there have
been help resources for using it. These have come in the
form of reference manuals, vendor-provided training and
consultancy, third-party books, integrated electronic docu-
mentation, in-program assistance (tooltips, agents, etc.), and
more recently, Internet-based documentation from software
vendors, professional third parties, and other users.

Users typically access computerized help resources via text
queries issued web search engines or the search facility of a
program’s help browser [12], or via in-program help inter-
faces and agents [10,22]. Search queries allow users to
express nuanced questions about their needs, such as “How
do I draw a circle in Illustrator?”. Search engines, however,
are largely unaware of the specifics of particular applica-
tions or of the user’s context (the contents of their
document, what dialogs they have open, etc.). Context-
sensitive, in-program help, on the other hand, is generally
restricted to answering descriptive questions about user
interface elements.

We attempt to combine the strengths of these two ap-
proaches – the context-awareness of in-program help and
the expressiveness of text searches – by using the user’s
context to improve results when they search for help arti-
facts on the Internet.

The user’s interaction with the program contains a wealth
of information related to their needs: what menu items they
have tried, what types of objects they are trying to manipu-
late, what panels and dialogs they have seen, etc. It seems
that it should be possible to use this information to retrieve
help artifacts that are more closely targeted to the user’s
current situation, particularly when they may not know the
correct terms to find the resources they need. We focus on
help queries that are issued within they user’s workflow –
while they are using an application – as context is most
readily available in that situation. It may be possible to ex-
tend the ideas we present to support search use cases, such
as general queries for ideas or tutorial material.

In this paper, we first present a taxonomy for understanding
context as it relates to user help needs. This framework
serves as a basis for understanding how context can be har-
nessed to help locate help artifacts. We then describe the
design of a help retrieval system that takes some elements
of user context into account, a prototype implementation of
this system, and a preliminary user study. We conclude
with a discussion of open issues and directions for future
work on this topic.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST ‘11, October 16-19, 2011, Santa Barbara, CA, USA.
Copyright © 2011 ACM 978-1-4503-0716-1/11/10...$10.00.

Paper Session: With a Little Help UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

195

BACKGROUND AND RELATED WORK
Our present work sits at the intersection of two lines of re-
search. We connect work on software documentation and
learning with developments in context-aware search and
user-oriented information retrieval.

Context-Sensitive Software Help and Documentation
The computer science community has long been interested
in the nature and use of software documentation resources.
As early as 1981, EMACS was using the term “self-
documenting” to advertise itself [26]. O’Malley et al. wrote
of the need to organize documentation around user needs,
with varying types of documentation aimed at meeting dif-
ferent software learning or reference goals [25].

Context-sensitive help systems use contextual information
from the user’s current interaction with a particular applica-
tion to drive or aid the access for help. Frequently this takes
the form of a button or command the user can use to request
documentation for the currently-open dialog or a particular
widget on the screen; Lee’s “?” [22] and the “What’s This”
help in Microsoft Windows both take this approach. Bal-
loon help [10] and tooltips integrate short help descriptions
into an application in the form of small panels shown when
the user hovers the mouse pointer over an interface ele-
ment. Recently, ToolClips has extended this to include
short videos showing the particular tool in action [13].

Myers et al. extended the notion of contextual help to allow
the user to ask more sophisticated questions about interface
elements or application behaviors with Crystal [24]. Crystal
allows users to ask “why did this happen?” and other types
of why/why not questions while using a program.

The Lumière [18] and EUROHELP [28] projects built
complex models of user goals, needs, and knowledge to
provide customized instruction or assistance. Lumière inte-
grated with Excel, attempting to infer the user’s likely goals
from their interactions with the software and provide goal-
based, context-sensitive guidance.

Simple contextual help is limited by only allowing the user
to contextually retrieve descriptive information about the
user interface elements on their screen, while the full user
modeling approaches of Lumière and EUROHELP require
complex models that are difficult to design and apply. Our
context retrieval lies in the gap between these extremes: we
use more sophisticated observations of user behavior and
application context to disambiguate and clarify user help
requests, but do not attempt to build comprehensive user
models or provide automated intervention. Beyond improv-
ing help searches, strengthening the connection between
learning resources and the software environment may also
improve software learnability [14].

Context and User Needs in Search
In its early days, web search operated under the traditional
text information retrieval model: users would provide que-
ries in the form of keyword lists, phrases, and Boolean

expressions, and the system would respond with a list of
relevant documents. Researchers have since sought to use
context in web search [21]; IntelliZap [11] enabled users to
form queries by selecting words in web pages, using the
page content combined with a semantic network to augment
those queries with additional context. Yahoo! implemented
a web-scale system along similar lines, with Y!Q allowing
the user to type free-text queries which would be aug-
mented with contextual information from the page from
which the query was initiated [19]. Watson [5] took a dif-
ferent approach, extracting text from a user’s active word
processor document to aid in refining web search for docu-
ment-related research tasks. The work of Brandt et al. uses
source code snippets to aid searches for example code [3].

Bringing contextual search closer to our domain, Wen et al.
describe a model for incorporating information about a us-
er’s computing environment as context to refine searches
related to PC troubleshooting [27]; our work is similar but
more general, using information from the user’s interaction
to aid in help searches. Heckerman and Horvitz probabilis-
tically related terms in user search queries to an engineered
help database to match results to the user’s information
needs [16]. Our taxonomy can serve as a theoretical basis
for further development of such systems and the system we
present is both simpler and applies to non-engineered
sources of help information.

Meeting a user’s information need does not end with pro-
viding a list of relevant documents. The user must also be
able to recognize which documents meet their particular
need and make use of its content. The recommender sys-
tems field has seen significant work on providing users with
explanations of their recommendations [17]; Coyle and
Smyth argue that this should be done in search as well [7].
Chi et al. present “information scent” as a paradigm for
understanding how users decide whether a particular link is
likely to result in useful information [6]. Explanations can
be viewed as deliberate scent markers leading the user to a
particular resource.

We extend previous work to locate software help by aug-
menting search queries with contextual data from a user’s
software application. We also use this contextual data to
provide additional information in the search interface so the
user can more easily relate retrieved documents back to the
application and their context.

UNDERSTANDING CONTEXT
In order to understand how we might use context to aid
software help search, it is first necessary to examine what
context is and how we understand it. Lieberman and Selker
[23] provide a useful functional definition of context as
“everything that affects a computation except the explicit
input and output”. To apply this understanding to the design
of an information retrieval system, we can say that context
is everything that a perfect information retrieval system
would need to know about the user, their situation, the do-

Paper Session: With a Little Help UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

196

main, and anything else in order to return exactly the results
relevant to the user’s stated query.

Dourish [8] further argues that context cannot be unders-
tood only as a static set of facts providing the background
for an action such as a web search. Context and action have
a cyclical relationship as context induces actions which
give rise to further context; context is therefore dynamic
and relational, changing and arising in relationship to ac-
tions. Anand and Mobasher [2] provide a useful approach
to computationally managing this view of context: rather
than trying to entirely model context, their approach looks
for definable, observable contextual cues that can be incor-
porated into the context-sensitive retrieval process.

There are many factors which may help determine the in-
tent of a help query and the relevance of particular artifacts
to that query. In the remainder of this section, we describe a
framework for understanding contextual factors and how
they relate to each other and to the user’s information need.
This framework provides two major benefits. First, it gives
us a way to reason about what information we may want to
incorporate into the search process and what cues might
yield that information. Second, it allows us to understand
how particular cues relate to the broader picture of the us-
er’s context. Our framework describes contextual factors in
terms of their visibility, type, and scope; Figure 1 provides
a graphical summary of these dimensions (dimensions in
bold are used by our prototype implementation).

Figure 1: Context factors in help needs

Context Observability
Not all contextual factors are immediately visible to the
system. Some things, such as the software settings and the
user’s recent actions, are directly observable by the applica-
tion and help system. Others, such as the user’s high-level
goal (e.g. “draw a basement remodeling plan”) or whether
they prefer text or video tutorials are not directly observa-
ble, at least in any meaningful fashion, and must be
inferred, approximated, or ignored.

While it is difficult to make direct use of unobservable con-
textual factors, recognizing and identifying them allows us

to better understand how observable context relates to the
user’s entire information need, identify strengths and weak-
nesses in a particular context-aware system, and look for
ways to infer or approximate the unobservable factors.

Context Factor Type
Many obvious contextual factors can be described as state,
or a snapshot of a portion of the system at a particular time.
The currently open windows, document, screen resolution,
and available hardware are all elements of the current state.

If we only considered state, we would be left with the static
background understanding of the context. We therefore
approximate the cyclical relationship of context and action
by allowing actions themselves to be considered context.
This results in our second context type: action.

Actions can be performed by the user, the system, or some
external agent. Drawing a square, deleting text, and plug-
ging in a graphics tablet are all actions. Actions result in
new states; states and actions can therefore be thought of as
nodes and edges, respectively, in a graph representing the
user’s changing context.

We make this distinction to allow states and the means by
which those states were reached to be treated separately. If
the user’s document contains a single square, the user could
have created that state by drawing a square on an empty
document or by deleting circle from a document containing
two shapes. It is conceivable that some information needs
depend only on the current state, while others are influ-
enced by the actions which produced the state.

Context Scopes
Finally, we define a number of scopes for contextual fac-
tors. System-level context pertains to the user’s computer
system as a whole, independent of any particular applica-
tion: the operating system and version, configured
hardware, installed applications, etc. Application-level con-
text is related to the particular application the user is using.
This includes the current display state and application mod-
es, open palettes and dialogs, the currently selected tool,
etc.

The next two scopes, document and domain, are related to
the work the user is currently doing. The work as it is
represented in the application, the objects making up the
user’s data file and the actions taken on them, makes up the
document-level context. Domain-level context relates to the
meaning of the system and its components in the context of
the user’s work domain. If a document contains a circle and
a rectangle, that is a document-level contextual factor; the
fact that the user is drawing a conference room with a circu-
lar table is domain-level. There can be substantial overlap
between document cues and domain-level factors or none at
all; bitmap image editors typically have a low-level repre-
sentation of the user’s work, while tools such as CASE
software and Autodesk’s Revit suite store high-level do-
main information in the document data model.

Paper Session: With a Little Help UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

197

The next scope is user-level context: user states and actions
which affect their information needs. This can include their
current knowledge of the program, their goals, and other
factors. Some observable cues may help in assessing ele-
ments of this scope, such as using browsing behavior to
identify what types of documents a user finds most helpful.

Finally, there is environmental context. A good deal of at-
tention is devoted to this aspect of context in some areas of
research, such as ubiquitous computing, but for application
help it seems to be less important. There may, however, be
elements of the environment that are relevant, such as a
physical source object the user is trying to model, or wheth-
er there are others in the area who would be distracted by
playing a tutorial video.

USING CONTEXT IN HELP SEARCH: SYSTEM DESIGN
We see three primary places in the search process where
this additional data can be incorporated. The first is in the
normal information retrieval process of generating results
for a user’s query. Information about the user’s context can
be considered as an additional component of the query.
How exactly this is done may vary across applications and
context elements: for applications, it may be appropriate to
restrict the scope of the search engine to only return results
for that application; for other elements, such as the docu-
ment contents, it may be more appropriate to simply favor
documents mentioning portions of the user’s context in the
ranking process.

User

Application Browser

Context
Aggregator

Interaction

Context Data
Context Profile

Query
Results + Aids

Navigation
Documents

Search
Service

Query + Context
Results

Rel. Feedback

Figure 2: Architecture of contextual search system

The second point where contextual information can be in-
troduced is in presenting the search results. Information
scent theory [6] says that users look for markers or cues to
indicate whether a particular link is likely to be useful or
relevant. A search system aware of the user’s context has
the ability to provide deliberate cues in the search results to
help the user determine which result is most likely to meet
their needs.

Finally, the system can use context to provide navigational
assistance when viewing the help artifact itself. Visual cues
can be helpful to users when trying to find the location of
on-screen elements [9]. It may be possible to help users
more efficiently use help resources by showing how those

resources relate to their context. Indicating what sections of
a web page discuss particular tools or objects could help the
user more quickly identify the content they are looking for.
Calling out mentions of tools with explanations of how to
activate them may help users more effectively apply what
they learn from a particular resource.

Our proposed architecture, shown in Figure 2, contains sev-
eral components to support these uses of context. Specific
implementations may combine two or more of these com-
ponents into a single subsystem.

Application Instrumentation
The application(s) for which contextual help search is to be
supported must record information about the user’s interac-
tion so that it is available in the search process. This can be
done internally by modifying the application and its under-
lying libraries to record this information or by using the
operating system or widget toolkit’s external inspection and
instrumentation facilities. The application instrumentation
reports user activities, such as button clicks or tool activa-
tions, as well as document-level events and actions to the
context aggregator. It may also record other application- or
document-level cues.

Context Aggregator
The context aggregator collects contextual information
from applications and makes it available to the search ser-
vice. It maintains a context profile to be used when the user
searches for help, possibly aggregating from multiple appli-
cations and allowing multiple help browsers to all have
access to context information. The context aggregator can
also collect system and environmental cues.

Help Browser
The help browser takes context profiles from the aggrega-
tor, submits them to the search service along with the user’s
query, and uses them to augment the search results display
and help the user browse help resources. When the user
interacts with results, it can also send information back to
the search service for relevance feedback and augment dis-
played resources with further contextual navigation aids.
This component can be a dedicated help search and brows-
ing application or an extension for a standard web browser.

Search Service
The search service takes queries and contextual information
and provides search results. It can be a standard search en-
gine, in which case the help browser would generate
queries incorporating the context data and post-process the
results, or a specific context- and application-aware service.

PROTOTYPE IMPLEMENTATION
We prototyped a context-aware search interface to search
the Web for help related to the Inkscape vector drawing
application1

1 http://www.inkscape.org

. We chose Inkscape because it is open source,
allowing us to easily instrument it, and because its docu-

Paper Session: With a Little Help UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

198

ment model contains somewhat structured data (high-level
graphical shapes), allowing us to observe meaningful doc-
ument-level cues.

We instrumented Inkscape to collect user actions and appli-
cation state changes. Some instrumentation was done in
GTK+2

We implemented the context aggregator and help browser
as a single application using the Qt

, the widget toolkit used by Inkscape, to log actions
such as windows opening and closing. Inkscape and GTK+
report the collected information to the context aggregator
over a socket with a simple binary protocol.

3

We used Google as the search service, augmenting queries
with contextual information and rewriting search results
with JavaScript.

 toolkit. The browser
injects custom JavaScript code into each web page after it
loads to rewrite search results and augment page content
with context-derived hints; context query results and infor-
mation about pages’ references to UI elements are cached
to speed up subsequent searches. The browser also provides
a navigational panel to allow the user to quickly jump to
mentions of various Inkscape user interface elements.

Collected Context
Many of the contextual factors discussed earlier are imposs-
ible to observe directly, and inferring them can be difficult.
In our system, we will need to use context cues that can be
observed. Because of little prior work in this area, it is un-
known at present what cues are useful and practical to
consider in a help system. Further, without an existing set
of context, search, and relevance data, it is not possible to
learn a model for result relevance to queries and cues.
Therefore, from the large set of potential cues, we chose
what we thought to be a reasonable selection of context
cues at the application and document scopes for our proto-
type and experiment, preferring cues that can easily be
converted into textual queries; the categories from which
our cues are taken are indicated in bold in Figure 1. Each
context profile contains:

• Last 5 active tools (application scope, state)
• Last 5 editing actions, such as “draw an ellipse”, as

reported by Inkscape’s undo/redo framework (docu-
ment scope, action)

• Titles of all open palettes, such as “Fill and Stroke”
(application scope, state)

• Types of the currently selected drawing objects (docu-
ment scope, state)

Search Augmentation
Kraft et al. [20] describe a variety of methods for integrat-
ing context into search. Since we built our implementation
on top of an existing search system we do not control, we

2 http://www.gtk.org
3 http://qt.nokia.com

used iterative filtering meta-search to integrate context with
the user’s query. For each cue, our system creates a new
query by concatenating a query relevant to that particular
context element (such as “select tool” when the user has
selected the Select tool). Each generated query also con-
tains “inkscape”; this is prepended to the query if the user
did not specify “inkscape” in their query. The injected
JavaScript

The weighting and scoring method we describe represents
our attempt to devise a mechanism that is reasonably well-
principled. The methods employed and their parameters
evolved iteratively but have not been empirically tuned.

 runs each of these queries in the background and
merges results with the results returned for the user’s initial
query. 100 results are requested for each query. The final
results are displayed in pages of 10.

Weighting Queries
Each query 𝑞𝑖 is assigned a weight 𝑤𝑖 . If the query entered
by the user, denoted 𝑞𝑢, contains the word “inkscape”, then
its weight 𝑤𝑢 = 0.5. Otherwise, 𝑤𝑢 = 0.2 and a new query
with weight 0.3 is generated by prefixing 𝑞𝑢 with
“inkscape”. Thus the total weight for the user’s initial
query, adjusted to prefer results about Inkscape, is 0.5.

Table 1 describes the weights given to each context-
generated query. Before blending with the user’s query,
these weights are normalized to sum to 0.5, resulting in a
50-50 blend of the user’s query and contextually-generated
queries when the final search results are determined.

Component Weight

Event contexts 1
2𝑖

 for the 𝑖th most recent context (𝑖 = 1
for the current context)

Editing actions Same as event contexts

Open palettes 1

Selected object
types

∑ 1
2𝑖

𝑛−1
𝑖=0 where 𝑛 is the number of ob-

jects of that type selected.

Table 1: Weights of context queries

Ranking Merged Results
In order to rank the merged result list, each resource 𝑐 is
assigned a score 𝑠𝑖(𝑐) for each query 𝑞𝑖. If 𝑐 is not included
in the first 100 results for 𝑞𝑖, then 𝑠𝑖(𝑐) = 0; if 𝑐 appears at
position 𝑗, 𝑠𝑖 is computed using the following formula:

𝑠𝑖(𝑐) =
1

2
𝑗−1
𝛼−1

This equation is derived from the half-life utility metric
used by Breese et al. [4]. Using an exponential decay rather
than simple rank as used by Kraft et al. works around a
problem we observed in early testing where pages that
matched multiple queries but only appeared deep in result
lists would out-rank more relevant pages that scored very

Paper Session: With a Little Help UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

199

highly for one or two queries. We use 𝛼 = 10, the length of
the default Google search results listing; this causes an ar-
ticle at position 10 to have a score of 0.5 and causes the
scoring function to be nearly linear over the first page of
results. Each article’s cumulative score 𝑠(𝑐) is computed as
the weighted sum 𝑠(𝑐) = ∑ 𝑤𝑖𝑠𝑖(𝑐)𝑖 of its per-list scores.
The merged result list is then ranked in decreasing order of
article score.

Search Result Presentation
To help the user assess the relevance of search results, our
injected JavaScript also augments the search result display
with information about the Inkscape tools, palettes, and
menu commands mentioned in the page (see Figure 3). This
display was designed to show this information in a manner
which fits into the existing search results display, providing
a context-aware augmentation of the document surrogate
[15]. The displayed items are detected by searching the
page text for the names of the interface elements along with
some synonyms (such as “line tool” for the line and curve
tool). Currently-open palettes are indicated in bold face and
the current tool’s icon is surrounded with a black box. Each
item in each of these lists is also a hyperlink to the first
mention of that item in the target page.

Figure 3: Search result presentation

In-Page Aids
To aid the user in making use of particular web pages, our
browser displays a summary panel containing the Inkscape
elements mentioned in that page as in the search results list.
This is to help the user quickly jump to portions of the page
that discuss tools or commands they are trying to use. All
mentions of Inkscape elements are also highlighted in yel-
low, and hovering over a mention yields a pop-up item
describing that command or palette and where to find it in
the interface (see Figure 4).

If the user clicks an item in the summary panel, that item is
selected: all of its mentions are highlighted green, and the
browser jumps to the next mention. The “Jump to Next”
and “Jump to Previous” buttons jump to the next and pre-
vious mention of a selected interface element. This allows
the user to quickly navigate to portions of the page which
talk about portions of the interface they have seen or think
might be relevant to their task.

Figure 4: Summary panel and in-page aids; Trans-
form has been clicked in the navigational controls.

USER STUDY
We conducted a user study to see how users interact with
and respond to our enhancements. The purpose of this study
is not to conclusively validate the benefits of contextual
search; rather, it is intended to provide insights into the
benefits and challenges inherent in both building and eva-
luating contextual software help interfaces, and gather user
impressions and observations on both the general concept
of context-aware search and our system prototype.

Experiment Setup
The study consisted of 4 image construction tasks. These
tasks are intentionally arranged from a simple to line draw-
ing using basic tools, to a complicated 3D effect where a
sphere had to be drawn and shaded:

1. Draw shapes with the line/curve tool
2. Create text objects and effects
3. Manipulate shapes with Boolean operations
4. Draw and shade a 3D sphere

Users were instructed to work through each task, searching
for help as they needed. They were also instructed to avoid

Paper Session: With a Little Help UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

200

hunting through the interface by trial-and-error but rather to
search when they did not know how to do something. The
task instructions and completion criteria did not focus on
details, as our primary interest was in the search behavior
and document relevance. The instructions were primarily
graphical to minimize the impact of task instructions on
query vocabulary; only the first task specifically named any
tool, technique, or menu item.

Each user used either our enhanced search system or the
standard stock Google search for the first 2 tasks and the
other interface for the remaining tasks. The standard
Google search was performed via our browser with the na-
vigation panel disabled to keep the interface consistent and
facilitate logging. To keep response times consistent across
conditions, we delayed stock Google results by performing
the context-dependent queries but only showing the unen-
hanced results; this was to prevent users from preferring
stock Google searches solely because they were faster.
Each user started with empty query and info caches.

Prior to tasks 1 and 3 the observer briefly explained the
search interface that they would be using, with a search for
“inkscape” as the example results page. For the unmodified
condition, the observer explained that it was a standard
Google search results page. For the modified case, they
explained the search result presentation and demonstrated
the summary panel with the Wikipedia article on Inkscape.
They also explained the basic browser controls with the
first interface used. The observer monitoring the experi-
ment session took notes for further analysis. In particular,
the observer recorded which search results they found help-
ful. Results were considered helpful if the user was able to
move forward with the task after referring to it; if uncertain,
the observer asked the user whether they found the result
useful or if it answered their question.

Users were limited to 20 minutes for each task, at which
point they were instructed to move on to the next task. Dur-
ing the experiment, only clarifying questions about the
requirements of the tasks were answered – no hints on how
to carry them out were provided.

For the study, we posted an ad on Craigslist to recruit users
with some experience using graphics software such as Pho-
toshop, Illustrator, or Paint.NET but little to no experience
with Inkscape. Fifteen paid participants between the age of
21 and 47 participated in the study.

Experiment Results
Most users did not complete more than 1 or 2 of the tasks;
no one completed all tasks correctly. Of the 60 task at-
tempts, 19 were completed (with varying degrees of
attention to detail and correctness), 35 timed out, and 6
were stopped early due to user frustration. Search interface
had negligible impact on task completion rates.After re-
moving searches occurring too late in the task to be of any
use and searches which were immediately corrected by the

user, users performed a total of 263 searches with an aver-
age of 4.38 searches per task. 98 of the 263 searches were
successful, leading directly or indirectly to a page that
helped the user with the task. shows the search counts by
task and search mode; there are no significant effects of
task or mode, although users who used the enhanced search
first performed more searches (𝑝 < 0.01).

Figure 5: Searches per task by task and mode.

Search Results
To gain insights on the impact of the contextual search sys-
tem, we looked at the utility achieved by the search results
provided by each system. We computed achieved utility by
having helpful pages accrue utility for the searches that led
to them. Helpful pages (pages enabling the user to move
forward) listed directly in the search results produced a
utility score of 1; helpful pages linked indirectly by pages
in the search results produced a score of 0.75. Only one
search query generated multiple helpful pages (in this case,
we only considered the higher-ranked of the two), and no
search queries generated useful pages more than 1 link re-
moved from the search results.

Figure 6: Average total utility per task.

The utility for each search results listing was then computed
using the half-life utility metric with 𝛼 = 5 [4]; 𝛼 was se-
lected based on the empirical analysis of search behavior by
Agichtein et al. [1]. If the user found the search results page
itself helpful – something in a page summary or list of
menu items met their information need – that was recorded

0

1

2

3

4

5

6

7

1 2 3 4 All

A
ve

ra
ge

 n
um

be
r

of
 s

ea
rc

he
s

Task

Stock Enhanced

0

0.5

1

1.5

2

2.5

3

1 2 3 4 All

M
ea

n
To

ta
l U

ti
lit

y

Task

Stock Enhanced

Paper Session: With a Little Help UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

201

as a utility of 1 and a rank of 0. Half-life utility is similar to
the commonly-used discounted cumulative gain metric,
with the added benefit of being based on a probabilistic
model of user behavior.

 shows average total utility for each task attempt (the utility
of each user’s searches during a task is summed, and the
sums are averaged over all users for a particular task and
interface). Two-way ANOVA shows a marginally signifi-
cant main effect of search mode on total utility (𝑝 = 0.074)
and no effect of task or task-mode interaction.

Users achieved grater utility with the enhanced search than
the stock search in all tasks but the first. One potential rea-
son for this is the nature of the tasks: task 1 was the easiest
and exercised a single tool in various ways, while the other
tasks were more workflow-oriented where users had to
combine several tools or operations to achieve the desired
effect. Most searches in task 1 were for things such as
“inkscape line tool”; it seems that such queries may already
be sufficiently specified that additional context information
only introduces noise into the search process. If we exclude
task 1 from our analysis, the effect of search mode on total
utility becomes significant (𝑝 = 0.031). This is an early,
but encouraging, result.

We also found that the impact of different context sources
in providing results varied across tasks – in task 3, edit ac-
tions were the most powerful source of useful links, while
users found links located by open palettes or active tools
more useful in other tasks. This suggests that the utility of
various types of contextual cues varies by context – not all
information needs will be met equally well by the same
classes of contextual information.

User Behavior
Users exhibited some noteworthy behavior while browsing.
The first is their use of information on the search results
page itself. Sometimes users did not even need to click a
link to have their question answered – the text snippet
Google extracted from some page contained the informa-
tion they needed (such as a keyboard shortcut). Two users
commented explicitly on this in discussion after the study,
saying they appreciated immediate information related to
their query. Additionally, help documents sometimes pro-
vided keywords that the user used in a subsequent search.

Users also frequently scanned a page quickly to find things
that looked relevant, particularly images of effects or
screenshots that they could recognize as related to the task.
We had intended the highlighting and summary panel navi-
gation to help with this, but users did not make substantial
use of the summary panel’s navigational capabilities and
rarely consulted the pop-ups on UI element references. This
was quite possibly due to lack of familiarity. The hig-
hlighted references also did not seem to help users skim the
page. Our browser highlighted all detected references; a
more selective approach may make this feature more useful.

User Receptiveness
Users were divided on whether they found the enhanced
results useful. Of the 14 users who told us their preference,
9 preferred the enhanced search to some degree. User re-
sponse to the augmentation of the search results display was
mixed; some users thought it was too distracting, while
others found it helpful. One user commented that “the pic-
torial element helps a lot, just for visually honing in on
something”. Users were similarly mixed in their response to
the summary panel; some found it useful for providing an
overview, while others found it goes in the way.

Difficulties and Limitations
We encountered a number of difficulties in conducting this
study. Users had difficulty adjusting to Inkscape’s user in-
terface and mode errors were common. The nature and
quality of available documentation also caused problems.
Inkscape tutorials and guides vary greatly in format as well
as both technical and presentational quality. Further, much
of the documentation is in the form of tutorials and other
blog posts that seem good for showing users what kinds of
things they can do and satisfying needs in a browse-for-
options surfing mode, but are less suited to answering
questions about the interface or particular drawing tasks.
Many resources, including some of the best tutorials and
manuals, were also broad in scope; since our system is cur-
rently limited to only retrieving entire documents, it had
difficulty locating focused material on specific tools.

There were two areas in which terminology mismatches
caused experimental issues. The first occurred in the first
task, where we instructed the users to use the “line tool” to
draw some simple shapes. The official name for this tool
within Inkscape is the “pen tool”, but documentation is in-
consistent in referring to it and often calls it either the
“line” or “curve” tool. With further refinement, context or
at least application awareness could make it much easier to
resolve these searches. The other mismatch was that many
sites call Inkscape’s node editor the “node tool”, while our
UI element detection code only looked for “node editor”.
Two users noticed that the tool was not detected when it
should have been. The effect of these problems on our re-
sults is unknown.

LESSONS LEARNED
Our study yielded several promising observations and cer-
tain beneficial trends seemed to emerge. In light of previous
work showing local context to be useful in search tasks [9],
our experiences provide insight into some of the outstand-
ing difficulties in using context to locate help resources.
First, the relationship between context and page content
must be carefully designed. When context is used to gener-
ate additional query terms, as it is in our implementation,
the queries need to be appropriate and well-constructed. A
combination of expert knowledge of the application and
empirical testing should produce query expansions that
produce useful results; the difficulties we had with the line
tool demonstrate the consequences of errors in this process.

Paper Session: With a Little Help UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

202

Contextual data is not all positive signal – spurious contex-
tual information also introduces noise. Further, the utility of
various contextual factors is not necessarily constant – it
may vary based on query or difficult-to-observe factors
such as user task. When the contextual data raises the rank
of less-useful results, it can cause user confusion; in one of
our experiment sessions, the user adjusted their queries
(adding quotation marks, additional keywords, and other
query refinement techniques) because they did not think the
contextually-retrieved results were relevant and were look-
ing for a query that excluded them in favor of more relevant
resources. It would be useful to understand not only what
factors were improving results, but what factors were intro-
ducing noise. More detailed future studies will hopefully
shed more light on which types and scopes of context are
most effective for providing useful results. Showing the
context-generated queries and allowing users to adjust them
may also be beneficial.

The utility of contextual search also depends on the exis-
tence of diverse, high-quality content. Without diverse
content, it becomes less relevant to include context in the
query, since results are already limited. Without quality
content, the results will not be useful to the user, even if
they accurately match the user’s current context of use.

We limited our prototype and experiment to simple docu-
ment- and application-level contextual cues in the current
prototype, but have limited data on their efficacy. It may be
that we need more sophistication either in the cues we col-
lect or the way we use them (e.g. using more inferred
factors, perhaps at the domain scope, or building better
ways of incorporating the contextual data into search) in
order to see significant impact. More detailed studies will
hopefully shed light on how to improve or reenvision in-
corporating contextual data into the search process.

We have found that information retrieval does not end with
presenting a list if results. The benefit users derived from
information contained within the search results page itself
is noteworthy: if users can have their need met without hav-
ing to select and browse to a page, it seems that they will be
able to continue with their work more quickly. One user
specifically suggested overview or disambiguation pages –
for example, including a survey of what ellipses are and
some of the basic operations that can be performed on them
when the user searches for “ellipse”. Search engines cur-
rently incorporate some of this; besides the snippets
extracted from pages, Google answers common queries
such as arithmetic, ticker symbols, or currency conversions
with immediate answers, and also provides its “I’m Feeling
Lucky” to immediately take the user to the first result. The
search engine Duck Duck Go4

4 http://duckduckgo.com

 takes this a step further, pro-
viding “Zero-Click Info” from Wikipedia, Stack Overflow,
and other informational sites in a box at the top of the

search results page. This seems like a promising direction
both for software help search and for general web searches.

CONCLUSION AND FUTURE DIRECTIONS
There is a good deal of work left to be done to make con-
text-aware help search a practical reality. We have
identified a number of types of contextual information, but
have only used a few of them in the present work. How best
to incorporate other types of information remains to be ex-
plored; in doing so, greater consideration needs to be given
to how help and search systems can select and use appro-
priate contextual data. The relevant algorithms may well
need to be adaptive, adjusting what context is used or how
it is incorporated into the search process based on context
and the user’s search queries. The feature selection and
search augmentation methods also need to be tuned, and
indexing document passages as well as whole documents
may help future systems identify more focused material.

Context could also be incorporated in places beyond the
search process itself. More nuanced relationships between
context and help artifacts could feasibly be defined as arti-
facts are created; if a tutorial contains a machine-readable
description of the menu commands used, for example, then
that could be matched against the user’s context to find
examples for recently-reverted user commands with high
accuracy. Q&A services could similarly capture the context
of the question-asker, allowing other users to later find that
question when encountering similar problems.

Contextual search further has the potential to help address
the information retrieval issues of polysemy and synonymy.
Including search terms from the user’s context can help
guide the search engine to the user’s intent. More sophisti-
cated approaches may be able to explicitly use context to
resolve identified ambiguities in query or document terms.

It appears particularly promising to use context in a manner
more similar to collaborative filtering or relevance feed-
back: if the system stores contextual “fingerprints” of users
that found each resource to be useful, those could be used
to help later users find resources which helped others in
similar contexts.

User context provides a wealth of information that can be
used to improve the ability for search services to meet us-
ers’ information needs. There are many opportunities in
applying context to software help, particularly as the types
and sources of that help diversify. We have presented a
framework for understanding context with respect to help
needs and the contextual cues which may be mined to im-
prove the help retrieval process. We have also prototyped
such a help system, studied users’ interaction with it, and
laid several outstanding challenges in making help systems
more sensitive to the nuances of users’ particular needs.

Paper Session: With a Little Help UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

203

REFERENCES
1. Agichtein, E., Brill, E., Dumais, S., and Ragno, R.

Learning user interaction models for predicting web
search result preferences. In Proc. SIGIR '06, ACM
(2006), 3-10.

2. Anand, S.S. and Mobasher, B. Contextual Recommen-
dation. In B. Berendt, A. Hotho, D. Mladenic and G.
Semeraro, eds., From Web to Social Web: Discovering
and Deploying User and Content Profiles. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2007, 142-160.

3. Brandt, J., Dontcheva, M., Weskamp, M., and Klem-
mer, S.R. Example-centric programming: integrating
web search into the development environment. In
Proc. CHI '10, ACM (2010), 513-522.

4. Breese, J.S., Heckerman, D., and Kadie, C. Empirical
Analysis of Predictive Algorithms for Collaborative
Filtering. In Proc. UAI '98, (1998), 43-52.

5. Budzik, J. and Hammond, K.J. User interactions with
everyday applications as context for just-in-time in-
formation access. In Proc. IUI '00, ACM (2000), 44-
51.

6. Chi, E.H., Pirolli, P., Chen, K., and Pitkow, J. Using
information scent to model user information needs and
actions and the Web. In Proc. CHI '01, ACM (2001),
490-497.

7. Coyle, M. and Smyth, B. Supporting intelligent Web
search. ACM Trans. Internet Technol. 7, 4 (2007), 20.

8. Dourish, P. What we talk about when we talk about
context. Personal Ubiquitous Comput. 8, 1 (2004), 19-
30.

9. Ehret, B.D. Learning where to look: location learning
in graphical user interfaces. In Proc. CHI '02, ACM
(2002), 211-218.

10. Farkas, D.K. The role of balloon help. SIGDOC Aste-
risk J. Comput. Doc. 17, 2 (1993), 3-19.

11. Finkelstein, L., Gabrilovich, E., Matias, Y., et al. Plac-
ing search in context: the concept revisited. ACM
Trans. Inf. Syst. 20, 1 (2002), 116-131.

12. Goodall, S.D. Online help: a part of documentation. In
Proc. SIGDOC '92, ACM (1992), 169-174.

13. Grossman, T. and Fitzmaurice, G. ToolClips: an inves-
tigation of contextual video assistance for functionality
understanding. In Proc. CHI '10, ACM (2010), 1515-
1524.

14. Grossman, T., Fitzmaurice, G., and Attar, R. A survey
of software learnability: metrics, methodologies and
guidelines. In Proc. CHI '09, ACM (2009), 649-658.

15. Hearst, M.A. Presentation of Search Results. In Search
User Interfaces. Cambridge University Press, 2009.

16. Heckerman, D. and Horvitz, E. Inferring Informational
Goals from Free-Text Queries: A Bayesian Approach.
In Proc. UAI '98, Morgan Kaufmann (1998), 230--237.

17. Herlocker, J.L., Konstan, J.A., and Riedl, J. Explaining
collaborative filtering recommendations. In Proc.
CSCW '00, ACM (2000), 241-250.

18. Horvitz, E., Breese, J., Heckerman, D., Hovel, D., and
Rommelse, K. The Lumière project: Bayesian user
modeling for inferring the goals and needs of software
users. In Proc. UAI '98, Morgan Kaufmann (1998),
256--265.

19. Kraft, R., Maghoul, F., and Chang, C.C. Y!Q: contex-
tual search at the point of inspiration. In Proc. CIKM
'05, ACM (2005), 816-823.

20. Kraft, R., Chang, C.C., Maghoul, F., and Kumar, R.
Searching with context. In Proc. WWW '06, ACM
(2006), 477-486.

21. Lawrence, S. Context in web search. Bulletin of the
Tech. Comm. on Data Eng., (2000).

22. Lee, W. “?”: a context-sensitive help system based on
hypertext. In Proc. ACM/IEEE DAC 1987, ACM
(1987), 429-435.

23. Lieberman, H. and Selker, T. Out of context: computer
systems that adapt to, and learn from, context. IBM
Syst. J. 39, 3-4 (2000), 617-632.

24. Myers, B.A., Weitzman, D.A., Ko, A.J., and Chau,
D.H. Answering why and why not questions in user in-
terfaces. In Proc. CHI '06, ACM (2006), 397-406.

25. O'Malley, C., Smolensky, P., Bannon, L., et al. A pro-
posal for user centered system documentation. In Proc.
CHI '83, ACM (1983), 282-285.

26. Stallman, R.M. EMACS the extensible, customizable
self-documenting display editor. In Proc. Text Manip.
'81, ACM (1981), 147-156.

27. Wen, J., Lao, N., and Ma, W. Probabilistic model for
contextual retrieval. In Proc. SIGIR '04, ACM (2004),
57-63.

28. Winkels, R. User modelling in help systems. In Proc.
CAL '90, Springer (1990), 184-193.

Paper Session: With a Little Help UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

204

	ABSTRACT
	Author Keywords
	ACM Classification Keywords
	General Terms

	INTRODUCTION
	BACKGROUND AND RELATED WORK
	Context-Sensitive Software Help and Documentation
	Context and User Needs in Search

	UNDERSTANDING CONTEXT
	Context Observability
	Context Factor Type
	Context Scopes

	USING CONTEXT IN HELP SEARCH: SYSTEM DESIGN
	Application Instrumentation
	Context Aggregator
	Help Browser
	Search Service

	PROTOTYPE IMPLEMENTATION
	Collected Context
	Search Augmentation
	Weighting Queries
	Ranking Merged Results

	Search Result Presentation
	In-Page Aids

	USER STUDY
	Experiment Setup
	Experiment Results
	Search Results
	User Behavior
	User Receptiveness

	Difficulties and Limitations

	LESSONS LEARNED
	CONCLUSION AND FUTURE DIRECTIONS
	REFERENCES

