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Abstract

In architectural design it is of cardinal importance
to anticipate how people will use a building prior to
its construction and occupation. Conventional multi-
agent simulation methods represent occupant move-
ment and activities to assess the day-to-day perfor-
mance of households and office buildings. In these en-
vironments, behavior is usually driven by individual
schedules or comfort-related actions. In other kinds
of settings, such as hospitals, airports, or factories,
behavior is driven by codified sets of collaborative
procedures which dynamically adapt to the spatial
and social context. To address these building types,
we propose a narrative-based approach whereby a va-
riety of behavior patterns involving multiple occu-
pants can be simulated and visualized. A scheduling
method coordinates the narratives using Operations
Research techniques. The method is demonstrated
through a preliminary study, which involved collect-
ing data in an existing hospital environment, model-
ing narratives computationally, and simulating them
in an abstracted layout of a generic hospital ward.

Introduction

One of the most important challenges faced by archi-
tects, engineers, and clients when designing a build-
ing is to anticipate the impact of a built environment
on the behavior of its human inhabitants, and vice
versa. This is a complicated task, due to the dy-
namic, stochastic, and context-dependent nature of
human behavior. The behavior of building users, in
fact, affects and is affected by environmental and so-
cial conditions, such as by the presence (or absence)
of other people in space.

Failures in anticipating human-environment interac-
tions can lead to severe consequences, such as under-
performing spaces, diminished productivity, general
dissatisfaction, and imbalances between expected and
actual energy consumption. Instead, by effectively
modeling and predicting the complex behaviors that
are likely to occur when spaces are occupied, archi-
tects and engineers will be better able to maximize oc-
cupants’ physical comfort, social well-being, and job
performance, while minimizing their collective impact
on the natural environment.

Occupant behavior simulation methods have been de-
veloped to predict human day-to-day influence on var-
ious sources of energy consumption, including HVAC
systems, lighting, airflow and solar radiation through
windows, and plug loads. In particular, simulating
occupant movement and activities can lead to bet-
ter predictions of internal loads calculations, and use
of ventilation systems and electrical appliances (Feng
et al., 2015).

Most of these energy-related occupant simulation
models, however, have been applied to households or
office buildings (as apparent from the comprehensive
literature review by Gaetani et al. (2016)). In these
settings, the activities performed can be described in
the form of individual schedules, which discard dy-
namic group interactions. Collaborative activities, in
fact, can take place only by scheduling the same ac-
tivity in the same space for multiple participants.

In other types of settings, such as hospitals, airports,
stations and factories, instead, behavior originates
from the performing of structured sets of procedures
which require collaboration among several actors, as
well as the use of several spaces and specialized equip-
ment. In such settings, activities cannot be scheduled
beforehand, since their timing needs to adapt to the
dynamic context in which they take place. Environ-
mental factors (e.g. the building physical layout, the
location of equipment), and social factors (crowding,
under-staffing), have a significant impact on where
people go and the activities they perform.

In an effort to make the analysis of such social
and environmental factors more practical for design
stakeholders, we propose a narrative-based approach
whereby a variety of behavior patterns involving mul-
tiple occupants can be simulated and visualized. Nar-
ratives unfold in time and across multiple spaces,
adapting to dynamic social and environmental con-
ditions. A centralized scheduling mechanism dynam-
ically allocates resources (e.g. actors, spaces and
equipment) to the most urgent narratives at a given
time. The method is demonstrated through a prelimi-
nary study, which involved collecting data in an exist-
ing hospital environment, modeling narratives com-
putationally, and simulating them in an abstracted
layout of a generic hospital ward.



Table 1: Classification of occupant behavior models with examples.

Model Type Occupant Presence Occupant Actions
Fixed Profile Appx G Occupancy (ASHRAE, 2004) Appx G Lighting (ASHRAE, 2004)
Deterministic Mahdavi and Tahmasebi (2015) Buso et al. (2014)
Parametric Stochastic Wang et al. (2005) Haldi and Robinson (2011)
Non-Parametric Stochastic Page (2007) Widén et al. (2009)
Multi-Agent Zimmermann (2010) Langevin et al. (2014)

Review of occupant behavior modeling

Recent literature reviews by Yan et al. (2015), Feng
et al. (2015), and Gaetani et al. (2016) collectively
provide a nearly exhaustive overview of existing oc-
cupant behavior models and related issues. Here we
offer a brief overview of existing occupant models
with a classification scheme that combines five mod-
eling types with two categories: presence and actions.
Presence models focus on how people use and move
through spaces, which determines when/where com-
fort levels need to be maintained and when/where ac-
tions can occur. Action models (also called adaptive
behavior or user behavior models) focus on interac-
tions with the building that directly affect energy use.
Examples of such actions include adjusting windows
and blinds, switching on/off lights, using appliances,
and setting thermostats. The five types of occupant
behavior models appear in Table 1 along with associ-
ated examples of presence and action models.

The current standard practice in energy modeling is
to reduce occupant behavior down to fixed profiles.
These profiles typically give aggregated hourly infor-
mation about the degree to which a space, electri-
cal appliance, or building system is used. The most
prominent examples of these profiles are those found
in ASHRAE (2004) and subsequent versions of Stan-
dard 90.1. While in widespread use, fixed profile mod-
els are unable to capture a number of behavioral pat-
terns: those that occur within each hour, and those
that differ from one day to the next.

The deterministic category of models is really a gen-
eralization that encompasses fixed profiles and other
techniques that exploit occupancy-related data sets
without introducing stochasticity. Mahdavi and Tah-
masebi (2015) produce schedules of presence and ab-
sence by applying a calculated threshold to recorded
occupancy data. Buso et al. (2014) use collected data
to calibrate schedules for various sources of energy
use. Human behavioral models based on simple de-
terministic rules, such as opening the window if the
indoor temperature is above 25◦C, also fall into this
category.

Parametric stochastic models employ one or more
standard probability distributions to reproduce ob-
served behavioral patterns. The distributions are fit
to the data through the selection of a relatively small
number of parameters. A classic example of this
approach is the work done by Wang et al. (2005),
who investigate the feasibility of modeling occupant

presence and absence using exponential distributions.
Haldi and Robinson (2011) present a number of para-
metric statistic models describing occupants’ use of
windows and shading devices.

Non-parametric stochastic models, also known as
data-driven models, use random processes but are
not limited to standard probability distributions. In-
stead, non-parametric statistical techniques are ap-
plied to data that may originate from motion detec-
tors, carbon dioxide sensors, video cameras, security-
based systems, and/or diaries. Examples include the
work of Page (2007) and Widén et al. (2009) for oc-
cupant presence and actions respectively.

The first four model types in Table 1 represent hu-
mans in an aggregated fashion, discarding informa-
tion about the schedule of any particular individual.
Multi-agent systems, instead, have been developed to
generate more fine-grained individualistic representa-
tions of occupant behavior, often accounting for oc-
cupant movement and activities.

Agent-based models, for instance, are a specific kind
of multi-agent system where each type of individual
has an associated self-contained sub-model describing
its response to other individuals and/or environmen-
tal stimuli (Yilmaz and Ören, 2009). Zimmermann
(2010), Chen et al. (2016) and Langevin et al. (2014)
present three agent-based models, the first two focus-
ing on building performance simulation, and the third
on occupant interaction with energy-related building
systems. A different kind of multi-agent system is
proposed by Goldstein et al. (2011) and Baptista et al.
(2014). In both models the behavior of each building
occupant is driven by a centralized scheduling algo-
rithm, which accounts for both individual and shared
activities. The model of Goldstein et al. (2011) also
accounts for occupant locations.

The aforementioned multi-agent systems, however,
have been mainly applied to describe the day-to-day
occupant behavior in households or office buildings.
In these types of settings, occupant presence and
movement is usually driven by individual-oriented
schedules, and occupant actions are largely moti-
vated by a desire to maintain user-related comfort
levels. In other types of settings such as hospitals,
airports, and stations, movement and actions depend
on a set of codified procedures that drive behavior
across multiple spaces. In hospital environments, for
instance, collaborative medical procedures drive the
behavior of doctors and nurses, who make use of



state-of-the-art technology to heal patients. In such
settings, the following challenges arise. First, behav-
ior can hardly be understood by analyzing individual
behaviors since procedures are mainly collaborative,
and they make use of multiple spaces and equipment
units. Second, the unfolding of procedures in space
depends on the presence (or absence) of other people
in a given space, as well as on environmental condi-
tions. Predefined schedules are limited in their ability
to handle exceptional situations such as one in which
a doctor or nurse is not currently available to perform
a medical check.

The narrative-based model proposed in this paper
aims to address these issues by recreating represen-
tative scenarios of occupant behavior, incorporating
the description of collaborative procedures and their
dynamic unfolding across spaces. This approach also
uses a centralized scheduling algorithm, but captures
shared activities in far greater detail. Multiple occu-
pants can engage in a sequence of both consecutive
and parallel tasks, performed over a succession of in-
door spaces.

Table 1 helps us classifying our model in relation to
the existing literature. Before doing so, it is worth
mentioning that the table is somewhat over-simplistic
in the sense that some modeling efforts do not fall
neatly into one of the eight categories. For example,
the research of Page (2007) covers not only occupant
presence but also some work on window opening ac-
tions. A customizable machine learning method de-
scribed by Goldstein et al. (2010) falls almost equally
into both the non-parametric stochastic and multi-
agent categories. Although the proposed narrative-
based model incorporates activities such as examining
a patient, the model does not currently incorporate
a description of the actions performed in the exam-
ination procedure, which may have a direct impact
on energy. We therefore classify our approach as a
special kind of multi-agent occupant presence model,
which incorporates a description of movement and ac-
tivities.

Multi-agent narratives

Narrative-based models

Narrative-based models are specific types of multi-
agent models in which occupant behavior is deter-
mined by narratives, computational entities that co-
ordinate the movement and shared activities of mul-
tiple agents in space following specific rule-based
scripts. While they share some fundamental charac-
teristics with other multi-agent systems, such as the
description of many agents interacting in an environ-
ment (Wooldridge, 2009), they differ from other types
of models (e.g. agent-based model) in the degree to
which agents are able to act autonomously.

In narrative-based models the behavior of agents is
directed by the narrative rather than by individual re-
sponses to the surrounding environment. This feature

makes complex collaborative behavior more manage-
able, since behavior rules are stored only in narrative
entities, rather than being distributed across many
agents. Narrative models can also store adaptation
rules to the surrounding environment. For instance,
if a patient cannot be found in his/her bed, a narra-
tive entity can instruct a doctor and a nurse to wait,
or to abort the procedure.
A scheduling mechanism coordinates the sequence of
narratives to be performed, using context-dependent
priority values. The scheduler assigns a higher prior-
ity to the most urgent or important narratives, and
postpones narratives which for instance cannot be
performed because some conditions are not satisfied
(e.g. the doctor or nurse are busy).
The narrative-based model leverages relevant insights
from other kinds of multi-agent systems adopted for
pedestrian movement (Dijkstra and Timmermans,
2002), fire egress situations (Ozel, 1991; Chu et al.,
2014), and human-environment interactions in public
spaces (Yan and Kalay, 2005). In these models people
movement and activities are modeled accounting for
the dynamic influence of the spatial and social envi-
ronment. The narrative-based model is also reminis-
cent of process-oriented simulations, which describe
the behavior of systems by means of structured ac-
tivity sequences that require a set of resources (e.g.
people, equipment, and spaces) and take a certain
(usually stochastic) amount of time (Heath et al.,
2011).
Figure 1 summarizes the key components of the
narrative-based model, which includes a centralized
scheduler, the narratives, a description of a space
where the behavior takes place, the actors involved
in the behavior, and a series of activities performed.
The role of these three elements in similar approaches
have been described by Simeone and Kalay (2012)
and Schaumann et al. (2015). Here we identify the
specific information required by spaces, actors, ac-
tivities, and narratives to support a newly proposed
scheduling mechanism.

Figure 1: System architecture

Elements of narrative-based models

Narrative-based models consist of a meaningful com-
bination of three elements: the space (where?), the
actors (who?), and the activities (what?). The infor-



Table 2: Information required by spaces, actors, activities, and narratives (SP stands for Static Properties, DP
for Dynamic Properties, and M for Methods)

Member name Space Actor Activity Narrative SP DP M Description
name X X X X X unique identification
geometry X X X form attributes
space function X X functional attributes
role X X role in an organization
related space X X space associated
duration X X expected duration
status X X X X X dynamic state
activity script X X performing rules
instructions X X sequence of procedures
priority function X X priority calculation

mation required to model narratives can be collected
using different methods, depending on the availabil-
ity of the data, or the feasibility of the data collection
procedures. Examples of such methods involve pres-
ence sensors, movement tracking devices (e.g. indoor
GPS, RFID, or wireless systems), self-reporting dig-
ital diaries, as well as field observations, interviews,
and questionnaires.
In this chapter we describe space, actor, activity and
narrative models. Table 2 summarizes the informa-
tion required by a narrative-based approach.

a) Spaces

Spaces constitute the setting for human behavior.
The space model includes a description of form (e.g.
a geometrical layout) and function, a list of attributes
that can be attached to the model describing how the
space can be used by its occupants. For instance, by
describing a space as ‘patient room’, it is possible to
constrain the behavior of agents to a discrete number
of activities allowed in patient rooms, such as resting,
eating, and checking on a patient’s status. The space
model also incorporates descriptions of the equipment
used to perform activities. The equipment model in-
cludes any mobile furniture, electrical devices or any
other kind of appliances that can be used by actors
to perform an activity. Furthermore, each space has
a status, which can be dynamically updated. Mod-
eling spaces is the primary task of architects. In the
simulation process, architects will be responsible to
generate a geometrical layout, and to define the func-
tional attributes of each space.

b) Actors

Actors are proxies for building occupants. They are
characterized by a role related to the institution that
occupies a building (e.g. doctor, nurse, or patient in
a hospital setting), a space to which they are associ-
ated (e.g a doctor’s office), and a status which may
vary during the simulation (e.g indicating if a patient
has been checked or not). Different from traditional
agent-based systems, in our model actors have lim-
ited perceptual and cognitive abilities. Instead, their
goal-oriented behavior is coordinated by the narra-

tives that associate each actor with a set of activities
to be performed in specific spaces. Actor models are
defined by architects and engineers together with do-
main experts (e.g hospital managers). The informa-
tion required to model actors can be based on data
collected in existing settings, or projections about fu-
ture building occupants.

c) Activities

Activities describe atomic behaviors that actors per-
form individually or collaboratively to achieve a goal.
Activity examples include going to a certain location,
talking with another actor, or working in an office.
The narrative model can assign a specific duration to
an activity (that can be extrapolated from data col-
lected in existing settings), or use stochastic time val-
ues. In the case of activities that involve movement,
the duration of the activity depends on the building
layout as well as on other user- or context-dependent
factors. The ‘walk to’ activity, in fact, uses a path-
finding algorithm to drive actors’ movement in space.
Even though some activities, such as ‘walk to’ or ‘talk
to’, can be applicable to most types of settings, others
can be considered domain-specific. Their modeling
therefore requires the assistance of domain experts
which provide context-dependent knowledge.

d) Narratives

Narrative models consist of sequences of activities
performed by one or more actors in space. Every nar-
rative encapsulates the relevant information required
to achieve a larger goal. Narratives are associated
with a list of parameters (e.g. a specific list of spaces
and actors), as well as a priority value that indicates
the relevance of the narrative at a given time. A set
of instructions describes the step-by-step preforming
of the narrative to coordinate the actors’ behavior.
A priority function dynamically updates the priority
value.
To avoid potential drawbacks of narrative descrip-
tions that are too rigid, stochasticity and conditional
statements can be inserted in the narrative instruc-
tions to allow for adaptation to contextual conditions.
Conditional statements can relate to different aspects



of the current state of the simulated environment. For
instance, they can refer to an agent’s state, environ-
mental conditions, or to the presence or absence of
other agents or equipment. For example, if a patient
cannot be found in his/her bed, the narrative can
instruct doctors to wait or to move on to the next
patient. This decision can depend on the doctor’s
state (e.g. in a hurry), environmental conditions (e.g.
noise in the room), or some probabilistic function.
Modeling narratives is a joint task between architects,
engineers and domain experts. Since rules of human
behavior in built environments pertain to the multi-
ple domain of expertise, other types of experts could
potentially participate in the definition of narratives,
such as environmental psychologists, anthropologists
and social scientists.

Scheduling narratives

A scheduling mechanism coordinates the activities
performed over time by dynamically selecting narra-
tives based on a priority value associated with each
narrative. The priority value is generated by means
of a priority function, which quantifies the desirabil-
ity of a narrative outcome at a specific moment in
time. These priority functions can take into account
dynamic social and environmental conditions.
Our approach is inspired by optimization techniques
used in Operations Research (Hillier and Lieberman,
2014) for airline crew and fleet scheduling, truck rout-
ing, political districting, and many other applications,
most notably hospitals (van Essen et al., 2012; Kon-
rad et al., 2013; M’Hallah and Alkhabbaz, 2013; Mar-
ques et al., 2014; Amaral and Costa, 2014).
In the case of hospital occupant behavior, we formu-
late the scheduling task as a Set Partitioning Problem
(Garfinkel and Nemhauser, 1969). We begin with a
set of m actors, ACTORS = {actor1, . . . , actorm}.
An actor may be engaged in performing exactly one
narrative at a time, though more than one actor
may be involved in performing the same narrative.
In mathematical terms, this means partitioning the
set ACTORS into subsets of actors that perform
one narrative each. For example, a set of five ac-
tors (i.e. ACTORS = {actor1, . . . , actor5}), who
perform two tasks might be partitioned into a nar-
rative involving two actors (e.g. {actor1, actor4})
and another narrative involving the remaining three
actors ({actor2, actor3, actor5}). In general, the
possible narratives can be described by the list
NARRATIVES = [narr1, . . . , narrn], where each
narrative narrj is a subset of ACTORS. We then
introduce a list of priority values PRIORITIES =
[priority1, . . . , priorityn], where higher priority num-
bers indicate more urgent narratives. Our task then is
to choose a set of narratives that partition ACTORS
in a way that maximizes the sum of the priority num-
bers.
A number of methods are available to solve the Set
Partitioning Problem. Whereas Linear Programming

techniques can help calculate an optimal solution, a
nearly optimal solution is sufficient for our purposes.
We therefore adapt a “greedy” approach similar to
the Set Cover greedy algorithm (Vazirani, 2003). The
premise of our method is quite simple: first, sort all
possible alternatives, and then pick the top alterna-
tives which do not contain overlapping actors.
To illustrate the algorithm, consider an example with
four actors and six possible narratives.

ACTORS = {Liz,Bob, John,Dana}
NARRATIVES = [{Liz,Bob}, {Dana}, {Bob},

{Liz,Bob, John}, {Bob, John}, {Liz}]
PRIORITIES = [6, 7, 4, 2, 11, 5]

The meaning of each narrative is irrelevant here. But
to provide context, one could imagine that the first
narrative with Liz and Bob represents a conversation
between a doctor and a nurse. The second narrative,
involving only Dana, might represent a patient rest-
ing in bed. The third narrative might represent a
nurse named Bob taking a break. The fourth might
represent a doctor named Liz and a nurse named Bob
checking a patient named John, and so on. The prior-
ities in the list PRIORITIES correspond to the nar-
ratives in the list NARRATIVES . A key point is
that not all of these possible narratives can occur at
the same time. Because each actor can participate in
one narrative only at any given time, a subset of the
narratives must be chosen. The choice is determined
based on the priority of each narrative. The priority
number of the conversation involving Liz and Bob,
for example, is 6.
Applying our algorithm, we first sort the narratives
by priority. The narrative involving Bob and John,
with a priority value of 11, is the most urgent and
therefore appears at the top of the list:

narr5 = {Bob, John}; priority5 = 11
narr2 = {Dana}; priority2 = 7
narr1 = {Liz,Bob}; priority1 = 6
narr6 = {Liz}; priority6 = 5
narr3 = {Bob}; priority3 = 4
narr4 = {Liz,Bob, John}; priority4 = 2

Next, we choose narratives from the top down while
avoiding conflicts. Narratives narr5 and narr2 are se-
lected, but narr1 must be avoided because Bob is al-
ready busy with narr5. We move on to narr6, which
is selected, then stop because all actors are assigned.
So the final narratives to be selected are:

narr5 = {Bob, John}; priority5 = 11
narr2 = {Dana}; priority2 = 7
narr6 = {Liz}; priority6 = 5

When the set partitioning algorithm is incorporated
into a simulation of human behavior, it must be re-
applied at successive points in simulated time. Our
simulation method performs the set partitioning af-
ter each task is completed, where each task is a single



instruction in a narrative at which an activity is per-
formed by a set of actors. Each time the algorithm is
applied, the set of possible narratives stays the same
but the priority of each narrative changes.
Priority functions relate to previous work on utility
functions in economics (von Neumann and Morgen-
stern, 1944) and in Artificial Intelligence (Russell and
Norvig, 1995; Mark, 2009). In this work we use intu-
itive principles to calculate priorities, as explained in
the case study section.
One technique we employ is to increase by 50% the
priority number of each narrative that is underway,
but not finished. This ensures that a simulated occu-
pant is likely to continue doing whatever he/she was
doing before, unless his/her narrative ends or he/she
is diverted by another narrative with an extremely
high priority number (e.g. an emergency). Further
research is needed to determine and validate a more
rigorous convention for favouring the current narra-
tive.
To produce realistic simulations covering many hours
of simulated time, priority values would likely have to
depend on the time of day, occupants’ prior activities,
and possibly other conditions. In future work, these
values could be extracted automatically from empiri-
cal data. One could imagine profiles of default narra-
tive priorities being developed in a manner analogous
to how occupancy profiles are currently put forward,
albeit with an extra processing step. The difference is
that while occupancy profiles average away the com-
plex social behavior patterns that typify how indoor
environments are actually used, well-calibrated prior-
ity values have the potential to reproduce these pat-
terns by guiding the selection of narratives.

Simulation system

A simulation system is responsible for selecting and
coordinating the execution of the narratives. The
system is composed of three modules (Figure 2). A
scheduler enumerates all the possible narratives to
perform, assigns a priority to each narrative, and uses
the algorithm described in the previous section to se-
lect which narratives to perform. A coordinator keeps
track of which occupants are engaged in which narra-
tives and initiates the possible selection of new narra-
tives whenever any occupant completes the narrative
instructions. A performer executes the narrative in-
structions.

Preliminary study in a hospital ward
We chose hospital environments as test bed for our
approach, for the following reasons. First, the com-
plexity of occupant behavior patterns makes differ-
ent types of prediction very challenging both for ar-
chitectural design and for energy modeling. The
complexity largely arises from the multitude of ac-
tors performing collaborative activities across mul-
tiple spaces. Second, despite the complexity of the
occupancy phenomena in hospitals, activity patterns

Figure 2: Simulation system

are mostly driven from well codified medical and orga-
nizational roles and procedures. This formalization is
useful for identifying, modeling, and simulating nar-
ratives. Third, human and building performance as-
pects are of primary concern in hospital design and
operations. Such aspects involve staff efficiency and
patient satisfaction, the use of spaces and equipment
in time (including how much they are left unused),
as well as saving costs from energy, light, appliances
and ventilation systems. Hence, both architects and
energy modelers would benefit from a model able to
represent building use patterns in such settings.
The presented case study involves the following steps:
(a) collecting data in existing hospital environments;
(b) modeling representative narratives computation-
ally; (c) simulating the narratives in an abstracted
layout of a hospital ward.

Data collection and analysis

We adopted two types of data collection methods.
The first involved direct experience observations in
an orthopedics department in Tel Aviv, Israel. Seven
trained observers followed and tracked the behavior
of one occupant each during the morning shift for six
days distributed over a period of three weeks. The ob-
servers recorded the actors involved, the activity per-
formed, the spatial location, the current hour, and
the duration of the behavior (Table 3). This data
collection method conformed to privacy regulations,
which forbid the use of any movement tracking de-
vices, cameras, or presence sensors.
The second data collection method involved extensive
interviews and discussions with doctors, nurses and
hospital managers. We integrated the previously col-
lected data with domain-experts knowledge accumu-
lated over decades of work experience in hospitals to
extrapolate the description of narratives which tend
to recur in different hospitals. Our assumption is that
by leveraging experts’ longstanding knowledge in the
hospital domain it is possible to identify narratives
that are likely to be performed in hospitals that are
yet to be built.
The data collection process culminated in the orga-



Table 3: Example of data collected by means of empirical observations

ID Hour Actor Activity Space Duration
1 9:53 am doctor 1 talkTo (nurse 1) nurse station 5 min
2 9:58 am doctor 1, nurse 1 walkTo (patient bed 1) nurse station 1 min
3 9:59 am doctor 1 talkTo (nurse 1) patient room 1 30 sec
4 9:59 am doctor 1, nurse 1 talkTo (patient 1) patient room 1 7 min
5 10:06 am doctor 1, nurse 1 walkTo (patient bed 2) patient room 1 5 sec
6 10:06 am nurse 1 talkTo (patient 2) patient room 1 4 min

Table 4: Example of narrative models

ID Narrative Duration Actors Activities Spaces
1 change shift 20-30 min nurses walkTo, prep med room
2 prep treatment 20-30 min nurse walkTo, prep med room
3 treat patient 5-10 min nurse, patient walkTo, treat patient room
4 food distribution 2-5 min volunteer walkTo, give patient room
5 patient check 10-15 min doctor, nurse, patient walkTo, talkTo, use patient bed, nurse station
6 go to bathroom 5-30 min patient walkTo, use bathroom
7 rest in bed / patient walkTo, use patient bed
8 do paperwork / doctor walkTo, use doctor office

nization and abstraction of the collected data into
narratives that were observed to recur from one shift
to another. Table 4 displays some of the identified
narratives, which are of different kinds. The first five
narratives, for instance, tend to recur at certain hours
of the day. The last four narratives, by contrast, can
be performed at any time during the shifts. Some nar-
ratives have specific durations, while others do not.

Modeling

In this study, we chose to simulate only a specific
number of narratives, and namely the last four dis-
played in Table 4. The narratives are performed in
an abstracted hospital ward layout with two doctors,
three nurses, and nine patients. Each doctor has an
individual office desk, nurses share one nurse station,
and there are four patient rooms with a bathroom in
each. Each narrative includes a set of procedures to
coordinate the behavior of a group of actors. Figure 3
displays the steps of the ’patient check’ narrative, per-
formed sequentially until completion.

A priority function assigns a contextual priority value
to each narrative. In this study we used three basic
principles to model priorities. First, we provided dif-
ferent initial priorities to collaborative and individ-
ualistic behaviors. Specifically, narratives which re-
quire collaboration among actors (e.g. patient check
narrative) are assigned higher priorities. Second,
we further prioritize narratives which have already
started to reduce the chance of a behavior being inter-
rupted. Third, we de-prioritize completed narratives
to reduce their chances of being triggered again.

In this work, space, actor, activity, narrative mod-
els, and priority functions have been written us-
ing Python, a common object-oriented programming

patient_check narrative:
parameters: [doctor , nurse , patient ,

n_station , p_bed]
instructions:
- [[doctor , nurse], walkTo , n_station]
- [doctor , talkTo , nurse]
- [[doctor , nurse , patient], walkTo , p_bed]
- [doctor , talkTo , nurse]
- stochastic:

- probability: .6
instructions:
- [[doctor , nurse], talkTo , patient]

- probability: .4
instructions:
- [nurse , walkTo , n_station]
- [nurse , use , n_station]
- [nurse , walkTo , p_bed]
- [[doctor , nurse], talkTo , patient]

Figure 3: Example of narrative instructions

language. Narrative procedures are specified using
YAML (Ben-Kiki et al., 2009), a human friendly data
serialization standard similar to XML and JSON.
A general-purpose simulator called PythonPDEVS
(Van Tendeloo and Vangheluwe, 2015), developed in-
dependently of this work, has been used to coordinate
the narratives, though different types of simulators
can be used for the same purpose.

Simulation

Figure 4 shows a snapshot of the simulation output.
Actors are represented as dots, with color indicating
the narrative they are engaged in (e.g. rest in bed,
nurse patient check, patient check). The legends to
the right list all the narratives taking place, as well
as the current instruction in each narrative. In the
snapshot, for instance, we can tell from the light green



Figure 4: Simulation output

color that actors D1, N1, and P12 are engaging in a
patient check narrative. The current instruction in-
dicates that the nurse N1 is using MedicineRoom1,
searching for medicine that he/she will later bring
back to PatientBed12 where the doctor and patient
are waiting.
The proposed simulation approach exhibits a number
of characteristics which distinguishes it from previous
multi-agent methods in the building science domain.
For example, occupants travel together as part of a
complex activity involving multiple locations. In the
multi-agent model of Goldstein et al. (2011), occu-
pants may be scheduled to travel together inciden-
tally, if it so happens they are selected for two consec-
utive activities in different locations. In the narrative-
based simulations of Figure 4, doctors and nurses
travel together because this common real-world be-
havior is explicitly modeled. We note that the human
tendency to travel in groups, in certain situations, has
previously been captured by Chu et al. (2014) in the
context of building evacuation.
As seen in Figure 4, multi-agent narratives allow fine-
grained tasks—such as the retrieval of medicine from
a separate room—to occur as part of an encompass-
ing behavior pattern. This introduces the potential
for occupancy simulations to incorporate increasingly
detailed descriptions of the complex behaviors that
routinely unfold in real-world built environments.

Discussion
The paper introduces a method to model, simulate,
and visualize the behavior of building occupant in
built or yet unbuilt environments. Compared to
previous methods, the proposed narrative-based ap-
proach has the following advantages. First, it de-
scribes human behavior patterns from the perspec-

tive of a narrative, rather than that of the actor who
performs it. This supports the encoding of rules to
describe collaborative behaviors, as well as adapta-
tions to dynamic social and environmental conditions.
Second, it provides a dynamic scheduling mechanism
which coordinates the performing of narratives over
time using priority values, which adapt to the dy-
namic state of the world. Third, it supports the fine-
grained description of representative scenarios that
occur in buildings of the same kind, accounting for
spatial and social factors. Simulations of this kind
could then be used by architects and engineers to
test multiple design options and observe how different
physical layouts affect occupant behavior.
The main drawback of this approach, however, is
the considerable amount of outstanding research re-
quired to develop, calibrate, and validate year-long
narrative-based simulations. In particular, we ac-
knowledge the cumbersome and time-consuming pro-
cess of collecting data manually and modeling narra-
tives. Because we focus on representative narratives
that are shared among buildings of the same kind,
this process need not be repeated for every design
project. Rather, a team of experts would develop
a set narratives for a particular building type. Ar-
chitects would then integrate these narrative models
with project-specific information, incorporating any
additional data that might be available.
Another drawback of the approach is that its suitabil-
ity for all building types, including offices and house-
holds, is unclear. It is possible that the algorithm
used to schedule narratives in hospital environments
may prove less effective in other types of settings,
where behavior is less driven by optimization consid-
erations. Nevertheless, hospitals and other process-
driven environments such as factories, airports, and



train stations play a significant role in society, and
deserve dedicated modeling approaches if necessary.
Future work may try to address the issues mentioned
above. The algorithm could be tested not only in
hospitals but also in different types of settings. Au-
tomated data collection methods could also be in-
corporated in the data collection phase to generate
accurate inputs to narrative models. Additional re-
search is also needed to ensure the various priority
functions are appropriately scaled, are based on com-
mon guidelines, theories, and/or datasets, and vary
appropriately over the course of simulated time to
reflect typical morning, afternoon, and evening activ-
ities.

Conclusion

We contribute early steps toward a tool that allows
modeling and simulating multi-agent narratives in ar-
chitectural design. The aim is to assist architects and
engineers in displaying representative occupant be-
havior scenarios prior to building construction. These
simulated scenarios may help architects evaluate dif-
ferent design options to maximize the productivity
and improve the experiences of future occupants,
while minimizing the impact on the natural environ-
ment.
A preliminary study demonstrates the data collec-
tion, modeling, and simulation process in a generic
hospital ward. Preliminary simulation results demon-
strate that the proposed approach holds the potential
to assist architects in simulating and dynamically vi-
sualizing representative occupant behavior scenarios
specifically tailored to the designed setting.
Narrative-based models could eventually be coupled
with weather, heat transfer, light, plug load, and
other types of energy models to simulate energy use
while accounting for the dynamic aspects of human
movement and activities in buildings.
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