
Some Design Refinements and Principles on the
Appearance and Behavior of Marking Menus

Mark A. Tapia

Department of Computer Science
University of Toronto

Toronto, Ontario, Canada, M5S 1A1
Tel.: 1 416 925 3953

E-mail: markt@dgp.utoronto.ca

Gordon Kurtenbach
Alias Research Ltd.
110 Richmond St. E

Toronto, Ontario, Canada, M5C 1 P 1
Tel.: 1416 362 8558

E-mail: gkurtenbach@aw.sgi.com

ABSTRACT
This paper describes some design refinements on marking
menus and shows how these refinements embody
interesting and relevant design principles for HCI. These
refinements are based on the design principles of: (1)
maintaining visual context, (2) hiding unnecessary
information, and (3) supporting skill development by
graphical feedback. The result is a new graphical
representation and a more effective form of visual feedback
and behavior for marking menus.

KEYWORDS: Menu layout, user interface design, pie
menus, gestures, marking menus.

INTRODUCTION
While marking menus are functionally equivalent to
standard linear pop-up or pull-down menus, they
dramatically accelerate selection time for expert users and
simplify the transition from novice to expert. Essentially,
marking menus are a refinement of radial (or pie) menus
[4] [10] integrating zigzag marks and hierarchical radial
menus.

Marking menus support two selection methods. The first,
"press and hold", is intended for a novice user not familiar
with the particular menu layout. The method allows the
novice to pop-up the menu by pressing down the mouse
button and holding the mouse still for a fraction (1/3) of
second, causing the menu to be displayed and allowing
menu item selection by moving in the direction of the
desired one. Like traditional menu systems, the menu item
is executed as soon as the mouse button is released. The
second selection method, "making a mark", is intended for
an expert familiar with the layout of a particular menu.
Instead of waiting for the menu display, the expert makes a
selection simply by moving the mouse immediately after
pressing the mouse button, causing an "ink trail" (the
"mark") to be made while moving the cursor rather than
displaying the menu. When the user releases the mouse
button, the system examines the angle of the mark to
determine the menu item to execute. In practice we have
found that "press and hold" is not annoying for novices and
easily avoided by experts.

Laboratory research has shown that marking menus are
used as designed [6]: novices begin by pressing and
holding to display the menu, and graduate to using marks
as they become experts a technique that can be up to 10
times faster than using the menu display.

The major design principles and empirical testing of
marking menus have been presented elsewhere [7] [8].

In this paper, we present seven design refinements on
marking menus based on three design principles (see Table
1). We organize refinements by principle, providing
examples to illustrate each and indicating how to apply
them to other situations.

Principle Refinement

Maintain visual
context

- Display only the labels
- Violate pie wedges
- Make labels symmetric

Hide unnecessary
information

- Hide parent menus

Support skill develop-
ment using graphical

feedback

- Use eight item menus
- Use compass star with
 menu center
- Show idealized marks

Table 1: The refinements to marking menus described in
this paper and the underlying design principles.

Recently, marking menus have been introduced into
StudioPaint V3, a paint program by Alias Research (see
Figure 1). The performance we have observed under
laboratory settings also occurs during "in field" use of the
program. Many of the design refinements, presented here,
are the result of incorporating marking menus into
StudioPaint.

Figure 1: The new graphical representation for marking menus in Alias StudioPaint V3. On the left, the user has selected from the root
menu (which only displays its center) and is now selecting a command (New Layer) from the second level menu; on the right, the user
makes a mark to perform the same selection.

PRINCIPLE: MAINTAIN VISUAL CONTEXT
The graphical representation of marking menus shown in
Figure 1 is a result of observing several problems with the
initial implementation of pie chart menus, the more
traditional graphical representation for radial menus
(Figure 2).

Figure 2: The "pie chart" style of graphical representation
originally used for marking menus.

Refinement: "labels only" display

Figure 2 shows our previous graphical design for marking
menus. Similar to other pie menu graphical designs [4],
menus are displayed like pie charts with command names
appearing within the wedges. The major problem with this
graphic design is that menus are much larger than their
linear menu equivalents - a consequence of the interaction of
vertical pie wedges and horizontal text. In turn, the size of
the menus made them visually disruptive when they were

displayed and cleared. Furthermore, their large size made
them awkward to use in constrained locations on the screen.
For example, when menus appear near the edge of the
screen, they can either be left clipped off by the edge of the
screen it or translated towards the center of the screen to be
completely visible. Using a graphical representation that
consumed less screen real estate seemed desirable. In
addition, the circular design was not aesthetically similar to
rectangular graphics found in modern GUIs.

We realized that the problem was not that the menu popped
up and "blinded" the user like a camera flash, but that the
menu obliterated the user's visual focus. This effect was
poignantly revealed when, in a real application, we
compared popping up the menu with using a mark (see
Figures 3a and 3b).

The application, called ConEd, allows a user to edit and
view timelines of speech events, with each event detailing
who is speaking and when they spoke [9]. The data appears
in a "piano roll" representation with black rectangles
representing speech events (Figure 3a shows a typical
window in ConEd). The user applies a command to a
particular event either by pointing to the event with the
mouse and either making a mark over it (see Figure 3a) or
using "press and hold" (pointing to it and pressing down the
mouse button to display the menu, and then selecting from
it, Figure 3b).

We observed that with "press and hold'" users would
sometimes hesitate after the menu disappeared. They
reported that sometimes they were not sure that they had
really performed the action on the intended event (e.g., "had
the event been deleted?"). However, this was not the case
when using the mark, since the event was always in view.

The new "labels only" graphical representation (Figure 4)
reveals more of the underlying context than the previous one
(Figure 3b), since it only obscures the context underneath
the textual labels, at the menu center, and along the mark.
We believe that this helps the, user to maintain a visual
awareness of the context when selecting from the menu

Figure 3a: Using a marking menu mark to delete an event in
the "event time line" application. The mark occludes very
little of the underlying data.

Figure 3b: The equivalent operation using the menu. The
menu display obscures a large portion of the underlying
data.

While the background behind the text of each label is not
needed when the text itself can be distinguished from the
data, this cannot be guaranteed in most applications. Instead,
we use a technique similar to that used to display movie
subtitles: the text appears in an opaque rectangle with a
contrasting frame around it to distinguish it from data. A

selected menu item is highlighted by reversing its color.
Consequently, selected and unselected items have different
visual representations and can be easily distinguished from
the underlying data.

Figure 4: The new "labels only" graphical design for
marking menus. The menu allows more of the underlying
data to be visible even when displaying the menu.

Refinement: violate pie wedges

The "labels only" graphical representation has the additional
advantage of compressing the menus, reducing both the
screen space covered by the menu (its about the same size as
traditional linear menus) and the size of the movements
required for selection. Figure 5 shows how we allow text
labels to "violate" pie wedges. To select an item, release the
cursor in the associated wedge, as before, or inside the menu
label when it is displayed.

Figure 5: The "labels only" representation "violates" the
wedges of a pie menu, however, the behavior remains
mainly unchanged.

Another advantage of the new graphical representation is
that it allows longer text items to be used. For example,
menu labels on the left (or right) side of the menu can
extend arbitrary distances to the left (or right). Menu items
at the top or bottom can extend both to the left and right.
This scheme allows marking menus to handle the same
length of menu items considered reasonable in traditional
linear menus.

Refinement: graphical symmetry of labels

We have also observed that it is important to use graphical
symmetry in a marking menu to make it visually attractive.
We found that a menu with each menu label a different size
appears busy and disorganized. Our current scheme sets all
the menu label boxes to the size of the largest menu item.
This ensures symmetry but has the disadvantage that one
overly large menu item can cause all menu items to be
overly large. A refinement of this scheme treats single large
menu items as exceptions, maintaining horizontal symmetry
by forcing horizontal pairs of menu items to be of equal
size.

We explored other ways of reducing menu size before
settling on the design described above. Since menu size
depends on text size, smaller menus can be generated by
using smaller font sizes. Unfortunately, as the text becomes
smaller, it becomes more difficult to read, effectively
limiting the solution.

Another possibility is to change the orientation of the text,
displaying it at an angle. Unfortunately this makes text
difficult to read (e.g., reading a title on the spine of a book
placed vertically). Implementing this method would have
required us to devise our own low level routines to draw text
at varying angles. For these two reasons, angling text was
not an attractive method.

PRINCIPLE: HIDE UNNECESSARY INFORMATION

Refinement: Hide parent menus

In traditional linear menu systems, when a user descends a
menu hierarchy, child submenus and their ancestors remain
on the screen, allowing a user to move back to parent menu
items and select from different submenus. Our original
design of marking menus used such a scheme (see Figure 2):
Journeying through a hierarchy of menus left a trail of
parent menus. This made it easy for the user to back-up in
the menu hierarchy using a technique similar to linear
menus first, pointing to a parent menu item closed all other
submenus and displayed items for that particular parent
menu item; and second, pointing to the center of a parent
menu caused all child submenus to be closed, displaying
items in the parent menu.

While this scheme allows users to back-up, reselect, and
browse menu hierarchies, it creates a clutter of parent menus
on the screen that occludes the data. Adopting our new
"labels only" graphical representation made this problem
disappear while creating a new problem: When parent and
child menus overlapped, it was hard to determine whether a
particular menu label was part of a parent or child menu.

We solved this problem by closing the parent menu and
leaving only the "center hole" graphic of the parent menu, as
soon as the user selects a submenu. This not only solved the
problem that parent menus cluttered the screen but also
eliminated the risk of accidentally pointing to a parent menu
item. While it is still possible to back-up in the menu
hierarchy, this is now restricted to parent menus, not to
items within them.

There are other advantages to hiding parent menu items:
first, reducing the clutter allows the user to concentrate on
the currently available menu items; and second, it
emphasizes the path to a particular menu selection (i.e., the
centers of the parent menu items are connected by lines; see
Figure 1), with each path corresponding to the shape of the
zigzag mark needed to select the particular menu item. We
believe that this may help users to learn both the menu items
available at each level and the correspondence between
zigzag shapes and menu items.

PRINCIPLE: SUPPORT SKILL DEVELOPMENT BY
GRAPHICAL FEEDBACK

Refinements: Use eight item menus, compass
star center

In practice, we have found that when text labels violate
wedge boundaries, there is no affect on selection
performance. We believe this is due to our design decision
to constrain all our marking menus to eight items, based on
the eight directions of a compass. In our new graphical
representation (Figure 5) the center of the menu is a
compass star In this way, even though a menu item may
spread beyond its wedge, it is still clear that each menu item
corresponds to one of the compass directions.

Refinement: Show Idealized Marks

After introducing marking menus into Alias StudioPaint,
users complained that when they used a mark it was hard to
tell whether they had drawn the mark correctly and invoked
the intended command. We asked ourselves "why didn't the
users of ConEd have this problem?". It might have been
because the menu in ConEd was simpler and therefore a
user remembered the menu item associated with a mark. In
contrast, StudioPaint's menu was more complicated making
it easier to forget and consequently users were unsure of
whether they had made the correct mark. StudioPaint users

reported uncertainty about a mark even when they where
sure they drew it correctly; they just did not know whether
the system had correctly recognized it.

Upon closer examination, we discovered the problem was
not with marking menus but with StudioPaint, since it did
not provide feedback indicating successful invocation of the
command. However, many of the commands in the marking
menu could also be found in the traditional linear pull-down
menus from the menubar. With this method, users were not
confused about whether a command had been successfully
invoked.

Thus, it was clear that unless the system responded quickly
and with sufficient feedback, users were not sure that the
system really recognized the mark. As a result, since they
frequently thought the mark was not recognized correctly,
users re-issued the mark and forced the system to re-execute
the command. In cases where the command required a long
time to complete (e.g., when creating a new image layer for
painting), the delay was very annoying.

Initially, we tried to persuade the designers of StudioPaint to
provide better feedback on command execution and
completion. However, they pointed out that traditional
pull-down menubar items did not require the extra feedback.
Thus, it was clear that using a mark to issue a command did
not provide feedback present in traditional menubar menus.

Therefore, we modified marking menus to provide feedback
to the user on how the system interpreted the mark. In some
respects, this mechanism corresponds to the way Macintosh
menu items flash when selected. In contrast, after our
system has recognized the mark and removed it from the
screen, it continues to display an idealized mark (see Figure
6) with the associated label of the selected menu item until
the system completes the command. The size and position of
the idealized mark are based on the user's mark.

Figure 6: (a) the mark a user draws to trigger a command;
(b) the feedback given to the user to indicate how the
system interpreted the mark and which command it
invoked.

DISCUSSION
In many cases, features of a good interaction technique are
artifacts of good design principles. Since the fundamental
design principles behind marking menus have been covered

elsewhere [8], we now discuss the general design and
cognitive principles that we believe underlie our design
refinements.

Maintaining Visual Context

Reducing the amount of occlusion created by a pop-up menu
is based on the hypothesis that the graphic occludes a user's
visual focus and causes the user to lose the context, forcing
the user to spend time re-acquiring the context after the
menu disappears.

This issue is related to the more general notion of visual
attention in interface design. In many applications, user
must divide their visual attention between the data (or the
"context") being operated upon and widgets that trigger
operations. This division can occur both in the spatial
domain, displaying menus and dialog boxes in a different
space on screen, and in the temporal domain, by temporarily
layering menus or dialogs over top the context.

This division creates a dilemma for the user interface
designer. The problem is that, since the context and
operations on the context are conceptually intertwined, it
may be desirable to see the object being operated upon
while operating on it. Unfortunately, both spatial and
temporal divisions preclude this.

Effectively, our "labels only" design for marking menus
circumvents the spatial and temporal division constraint by
supporting dual attention, since both the menu (UI widget)
and the context appear at the same time and are close
together in the visual field. Other researchers [1] [2] [3]
have explored this general notion by creating see through UI
widgets. The "labels only" technique in marking menus is
only one of several that support dual attention. For example,
[2] investigates the effect of varying the transparency
(opacity) of UI widgets.

As for tangible benefits, the effect of supporting dual
attention is that a user is not forced to divide visual focus
between a spatially displaced context and a UI widget and to
re-acquire the visual image of the context after it has been
obliterated by a pop-up graphic. Both these benefits translate
into faster task performance.

Users reported another more intangible benefit when using
marks: Using marks, instead of menus, has a more direct
feel, analogous to applying an operation directly on an
object. Because this observation is vague, we can only
speculate on the source. First, the speed of the mark may
influence the perception since there is evidence that the
more responsive a system is, the more a user feels that the
system is being directly manipulated (Hutchins, Hollan, &
Norman 1986). Second, the proximity of the menus or the

marks within the users focus may be another influence (e.g.,
the user does not have to make trips to and from the menu
bar). Investigating these observations may help to define
more clearly what is meant by "direct manipulation" and to
quantify what makes some interaction techniques "feel
right".

Information Hiding

One example of information hiding is to conceal parent
menu items when descending a marking menu hierarchy. In
many cases, leaving the parent menu items displayed
produces clutter that confuses the user. Hiding the menu has
a cost - while a user cannot back-up to a cousin menu in a
single step, they can select the parent menu by pausing on
the central hole and choosing another item. We feel that the
cost is worth the benefit over time, since this situation only
occurs when a user browses an unfamiliar menu structure.
One fundamental design principle for marking menus is
optimizing speed of selection for the expert user, not for the
novices who prefer guided exploration to speed.

We claim that, frequently, UI designs that work for novices
are clumsy for experts. In contrast, with marking menus
novices report that while browsing is slower than with
traditional linear menus, when they become experts, they do
not notice the problem.

Support skill development by graphical feedback

Showing the user an idealized version of a mark may
encourage expert behavior (i.e., selection using small, fast
marks). The success of correctly recognizing a mark
depends on the user's accuracy in drawing it. Showing a user
an idealized version of the mark not only helps to determine
the menu item selected, but also provides clues on how to
make a more accurate mark. The intention is that this, in
turn, will help users to improve the accuracy of their marks
and the recognition rate.

Idealized marks appear whenever the user makes a selection
from the menu. The intention is to reinforce to the user the
image of the mark needed to invoke the menu item. A
similar scheme could be applied to other recognition based
systems.

One key to performing extremely fast selections with
marking menus is by drawing very small marks. The
recognition of a mark depends only on its shape not its size.
Thus, a particular selection from a menu four levels deep
may be made by a four-inch long mark, or more quickly by
an one-inch mark of the same shape. Since the idealized
version of the mark is drawn at the same size as the mark the
user entered (e.g., a one inch mark creates a one inch
idealized mark), we hope that as the user draws smaller

marks, the smaller idealized mark will reinforce the visual
image of smaller and faster marks.
CONCLUSIONS AND FUTURE RESEARCH

This paper described some design refinements on marking
menus and how these refinements embodied interesting and
relevant design principles for HCI. The design principles
arose iteratively from analyzing design artifacts, rather than
from first principles. We were then able to reapply design
principles to refine the design.

While we have not conducted formal tests of the refinements
in this paper, our refinements were based on user
preferences. During the iterative process, we listened to our
own design preferences and those from a pool of
approximately 15 users of marking menus in StudioPaint
and ConEd. As a result, we feel our refinements are valid.
After implementing the "labels only" representation, we
have never used or been asked to use the pie style
representation. Similarly, the "idealized mark" feedback
seems to have addressed user insecurities about mark
recognition. The notion of "graphical symmetry of labels"
arose from a graphical designer who complained that
asymmetric menu items in StudioPaint looked graphically
messy. While the benefits of "hiding parent menus" are
immediately apparent when the parent menus are displayed,
none of our users has requested the display. Finally, no one
also complained about the labels "violating pie wedges".

We could run formal experiments to perform rigorous tests
of our design refinements to answer a number of questions.
Does a user maintain more visual context with the "labels
only" display than with the "pie style"? Do idealized marks
help users learn marks more quickly? Currently we are using
our design refinements because users clearly prefer them.

While three design principles can be extended to other
situations, the designer must exercise caution. For example,
consider invoking a submenu that does not apply to the
current application (e.g., an accessory menu that selects
electronic mail). Should the underlying application data be
hidden to eliminate unnecessary information? Should the
data remain to maintain visual context? Future research will
define our design principles (especially "maintain visual
context") in more detail so that they can be applied to
different situations.

We are continuing to make refinements to marking menus,
especially while introducing them into other commercial
products. The "labels only" representation is a large step
forward in making marking menus "industrial strength" and
graphically compatible with modern GUIs. The focus of our
current research is on using marking menus in conjunction
with other GUI interaction techniques and ToolGlass
technologies.

Is this level of attention to detail warranted for something as
trivial as menu selection? Our feeling is that menu selection
is a fundamental, high frequency operation in modern GUIs
and that, consequently, small improvements can have major
benefits. The positive response from users supports this
claim.

We hope this paper will help future implementers of
marking menus and that other HCI designers can use the
design principles presented in this paper to generate or
refine designs.

ACKNOWLEDGMENT

We thank George Fitzmaurice and Bill Buxton for their
comments and assistance in writing this paper. We
gratefully acknowledge the support of our laboratory from
the following organizations: the Natural Sciences and
Engineering Research Council (NSERC), Apple Computer,
the Information Technology Research Center (ITRC), Xerox
PARC, Alias Research Inc., and the Ontario Telepresence
Project.

REFERENCES

1. Bier E., Stone M., Fishkin K., Buxton W.A., and Baudel

T. A Taxonomy of See-Through Tools. In Proceedings of
CHI `94,. pp. 358-364.

2. Harrison B.L., Ishii H., Vicente K.J., Buxton W.A.S)

Transparent Layered User Interfaces: An Evaluation of
a Display Design to Enhance Focused and Divided
Attention. In Proceedings of CHI `95, (May 07-1), Denver,
p. 317 -324.

3. Harrison B.L., Kurtenbach G., and Vicente K.J. An

Experimental Evaluation of Transparent User Interface
Tools and Information Content. To appear in Proceedings
of UIST '95., 1995

4. Hopkins D. The design and implementation of pie

menus. In Dr. Dobb's Journal 1, 1991, 6:12 pp. 16-26.

5. Hutchins E., Hollan J., and Norman D. Direct

Manipulation Interfaces. In Norman D. and Draper S.
(Eds.), User Centered System Design, Lawrence Erlbaum
Associates, 1986, pp. 118 -123.

6. Kurtenbach G. The Design and Evaluation of Marking

Menus, Ph.D. Thesis, University of Toronto, Toronto,
Canada., 1993.

7. Kurtenbach G. and Buxton W.A.S User Learning and

Performance with Marking Menus, Proceedings of CHI
'94, April 24-28, pp. 258 -264.

8. Kurtenbach G., Moran T. and Buxton W.A.S
Contextual Animation of Gestural Commands. In
Computer Graphics Forum, V13 (5), 1994, pp. 305-314.

9. Sellen A.J. "Speech patterns in video-mediated

conversation. In proceedings of the CHI `92 Conference
on Human Factors in Computing Systems; New York: ACM..
May 3-7, pp 49 –59.

10. Wiseman N.E., Lemke H.U., and Hiles J.O. "PIXIE: A

New Approach to Graphical Man-machine
Communication". In Proceedings of 1969 CAD Conference
Southhampton 463 IEEE Conference Publication 51,
1969.

	Mark A. Tapia
	Gordon Kurtenbach
	E-mail: gkurtenbach@aw.sgi.com

