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ABSTRACT
Occupant behavior is widely regarded as one of the
most significant sources of uncertainty in the predic-
tion of building energy use. Preexisting simulation
methods address this issue by automatically reproduc-
ing patterns of behavior found in historical occupant
schedules. We extend these methods to incorporate
spatial information. In our work, space layout influ-
ences the selection of individuals who participate in
an activity, and the location where the activity occurs.
Participants and locations are randomly selected based
on probabilities derived from cost functions. One of
these cost functions encourages participation between
occupants of nearby workstations. Another discour-
ages overcrowding. We apply the method to an exist-
ing office building to study how effectively an occu-
pant model can be customized, and how accurately it
can predict space utilization.

INTRODUCTION
Building occupants perform many difficult-to-predict
and complex actions every day. These actions have a
dramatic impact on indoor temperature, lighting con-
ditions, and the state of a building control system.
Thus a simulation which oversimplifies human be-
havior is unlikely to yield an accurate prediction of
a building’s energy requirements. Bourgeois et al.
(2005) demonstrated the importance of modeling oc-
cupancy at a higher level of detail than is generally
done in practice. Taking a typical energy model of
an office building and adding individual simulated oc-
cupants, each with the ability to manipulate heating,
cooling, and lighting controls, their energy use predic-
tions changed by 62%. Hoes et al. (2009) showed that
for a variety of office types, the use of a detailed occu-
pant model can have a significant effect on both heat-
ing and cooling energy demand predictions, and both
minimum and maximum indoor temperatures.
Our interest lies in the use of simulation to predict
space utilization: which rooms or areas in a new build-
ing are likely to be occupied, and by how many people,
at various times of the day. For an occupant-controlled
indoor environment, this information is a prerequisite
for simulating the manipulation of specific lighting
controls, blinds, and thermostats. For a building with
mostly automatic environmental controls, where occu-
pants have less direct impact on energy use, their pre-

dicted whereabouts throughout the day can be used to
determine when an adequate comfort level is needed
in a particular room, and when it is unnecessary.
Several preexisting occupant behavior simulation
methods generate realistic sequences of activities us-
ing probabilistic models trained on historical sched-
ules of actual building occupants. We extend these
schedule-calibrated methods such that each gener-
ated activity takes place at a specified location. In
our method, occupant behavior depends in part on
a space layout: a floor plan supplemented with cer-
tain occupancy-related parameters. Space layout in-
fluences the selection of individuals who participate in
a shared activity, and the location where the activity
occurs. The method is novel in that all activity par-
ticipants and locations are randomly selected based on
probabilities derived from cost functions. For exam-
ple, if a simulated office worker initiates a meeting, a
cost function is used to encourage participation among
the occupants of nearby workstations. When selecting
a location for the meeting, a similar cost function fa-
vors nearby meeting rooms, while another steers the
occupants away from rooms that would otherwise be-
come underutilized or overcrowded.
After reviewing related work and describing the con-
tributed method, we present its application to an exist-
ing office building. The results are analyzed to assess
how well the behavior of each type of simulated occu-
pant matches the persona specified by the simulation
user. We also study the model’s validity by comparing
the predicted utilization of several meeting rooms to
their recorded bookings.

RELATED WORK
We are interested in simulation methods that aim
to improve energy use predictions by generating fic-
tional occupant schedules. An occupant schedule is
a chronological sequence of activities for a single oc-
cupant for a single day. Table 1 illustrates the type
of occupant schedule we pursue in this paper, where
each activity includes the task performed, the num-
ber of participants, and the location where participants
gather. The generated schedules should be interdepen-
dent; if the schedule in Table 1 is generated for one oc-
cupant, for example, then the schedules of seven other
occupants should also exhibit a “Formal Meeting” in
“Room 5018” starting around 2:58 pm.
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Table 1: Example of an occupant schedule. The npo is
the number of participating occupants.

TIME TASK npo LOCATION
9:13 Desk Work 1 Cubicle 12
10:22 Informal Meeting 2 Office 19
10:42 Desk Work 1 Cubicle 12
12:17 Onsite Break 3 Kitchen
13:11 Desk Work 1 Cubicle 12
13:13 Washroom Break 1 Washroom A
13:14 Desk Work 1 Cubicle 12
14:58 Formal Meeting 8 Room 17
16:05 Desk Work 1 Cubicle 12
16:53 Washroom Break 1 Washroom A
16:56 Desk Work 1 Cubicle 12
17:52 Off 1 Offsite

Preexisting occupant behavior simulation methods
represent activities at different levels of detail, and
generate schedules based on different sets of input
data. Though its primary purpose was to model the
manual adjustment of electric lighting and blind sys-
tems, Lightswitch 2002 (Reinhart, 2004) includes a
simple technique for generating occupant schedules in
office environments. About a half-dozen parameters
capture the expected times and durations of arrivals,
morning/lunch/afternoon breaks, and departures. The
transition times between these activities are randomly
selected for each individual within an interval sur-
rounding the expected times. Wang et al. (2005) pro-
posed a similar method, except that between arrival
and lunch and between lunch and departure, all periods
of presence and absence are exponentially distributed.
Zimmerman (2007) sampled uniform distributions for
activity start and end times, and included shared activ-
ities involving groups of participants.
We refer to the Reinhart, Wang, and Zimmerman
methods as parameter-based, as the input data that in-
fluences simulated behavior could be supplied as a set
of parameters by a simulation user. In place of user-
supplied behavioral parameters, a schedule-calibrated
method inputs numerous schedules recorded by actual
building occupants. It then applies a machine learning
algorithm to automatically detect and reproduce sta-
tistically significant patterns of behavior. Both Page
(2007) and Richardson et al. (2008) applied Markov
chains for this purpose; the former to model the pres-
ence and absence of occupants in office spaces, and
the latter to model the number of present and active
household occupants. Goldstein et al. (2010b) pro-
posed a technique for generating both numerical activ-
ity attributes (e.g. time of day, number of participants),
and categorical attributes (e.g. task).
While schedule-calibrated methods seem more likely
to produce realistic patterns of behavior, it would be
easier for a building designer to customize a simula-
tion given a parameter-based method. The hybrid ap-
proach described in Goldstein et al. (2010a) strives for

both qualities by combining the information found in
historical schedules with optional parameters supplied
by the user in the form of personas. A simulated oc-
cupant assigned the persona in Table 2, for example,
would arrive between 8:30 and 9:00 with some high
probability (80% was used in the paper). None of the
attributes refer to a lunch break, yet the simulation is
likely to produce a relatively long break around noon
in response to the historical schedule data. The method
supports shared activities involving one initiator who
“summons” additional participants.

Table 2: Example of a persona
PERSONA ATTRIBUTE INPUT

Arrival 8:30–9:00
Departure 17:00–18:00

Informal Meeting Time 0:30–1:00
Formal Meeting Probability 20%
Onsite Break Occurrences 1–3
Offsite Break Probability 60%

Few preexisting energy-related occupant models track
the locations of each simulated occupant, as would be
needed to produce schedules like that in Table 1. A
notable exception is User Simulation of Space Utili-
sation (USSU), described in Tabak (2008), which as-
signs locations to both individual and shared activities.
When an occupant initiates a new activity, the simu-
lation identifies all available locations that satisfy the
activity’s requirements. Of these candidate locations,
the one selected is the one nearest the location of the
occupant’s previous activity.
USSU could be described as a parameter-based
method requiring a relatively large number of input pa-
rameters. In addition to information about the timing
and frequency of occupants’ activities, the workflows
of their organizations are supplied in the form of roles,
organizational units, task groups, and other abstrac-
tions. Since both personal and organizational factors
influence the way occupants interact with one another
(e.g. the number of meeting participants), and because
this interaction can affect space utilization (e.g. the
selection of an appropriate meeting room), the com-
plexity of the model can be justified. The drawback is
the time and effort required for model preparation.

METHOD
Comparison with Related Work
The occupant schedules generated by the proposed
method include all attributes shown in Table 1. The
schedules are interdependent, and the selection of par-
ticipants and locations requires a space layout.
To ease model preparation, we strive to minimize
the number of required input parameters. Schedule-
calibrated methods support this objective because, al-
though historical datasets tend to be large and com-
plex, they can be packaged with simulation software
for reuse on different projects. Pre-packaged behavior
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Figure 1: The space layout of an office with 60 occupants and several common areas

on its own may not suit a specific project, so we adopt
personas to support customization.
The proposed method is similar to USSU in that par-
ticipants of shared activities are randomly selected.
However, USSU uses organizational parameters to de-
rive the probabilities that occupants are selected as par-
ticipants. Our input data includes relatively little orga-
nizational information, so we derive these probabili-
ties from the space layout.
A key difference between USSU and the proposed
method is that in the latter, when an activity has more
than one candidate location, the selection is random.
A location far from the initiator may be selected, as
may a room that is already overcrowded, albeit with
a low probability. Another difference is that distances
are measured from the initiator’s base location, their
workstation in an office or their bedroom in a house-
hold, instead of the location of their previous activity.

Space Layout
With historical schedules pre-packaged, the input data
supplied by the simulation user consists of the fol-
lowing: one persona for each type of simulated oc-
cupant; a distance parameter D that influences occu-
pants’ preference for nearby locations; and a space
layout. For our purposes, the space layout must sup-
ply the base location of each occupant, the locations

where each “Randomized” task can be performed (see
Table 3), and the capacity of each location. It must
also be possible to derive some measure of distance
between any two locations. Our vision is that future
building designers will supply simulation-ready space
layouts by taking the floor plans that exist today, and
adding a modest amount of additional information.
An example of a space layout is shown in Figure 1.
The base locations of 60 occupants, their cubicles and
personal offices, are each marked with one of three
personas: Research & Development (R&D), Market-
ing & Sales (M&S), or Facilities & Information Tech-
nology (F&IT). There are also several common areas:
four meeting rooms (A, B, C, D), a kitchen and lunch
room (K, L), two washrooms (M, W), and three loca-
tions housing printers, photocopiers, and other devices
(X, Y, Z). The task and capacity associated with each
location is given on the right. Meeting Room A is used
for formal meetings, for example, and has a capacity
of 6. The capacity is a subjective estimate of the max-
imum number of people that can simultaneously oc-
cupy a location without feeling overcrowded.
Base locations and location-specific parameters could
be added to a floor plan like that in Figure 1 in a few
hours or less. The user must also supply persona at-
tributes (see Table 4), but the total model preparation
time should remain reasonable.
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Participant Selection
As in Goldstein et al. (2010b), whenever a simulated
occupant’s activity is complete, a new activity is ran-
domly generated. The task is selected first, followed
by the number of participating occupants (npo), fol-
lowed by the activity’s duration. If npo > 1, then an
additional npo−1 occupants are summoned to join the
initiator. In Goldstein et al. (2010a), all occupants of
the same persona were assigned the same probability
of being summoned to participate in a shared activity.
Here the persona is ignored, and the probability that a
particular occupant will be summoned depends on the
space layout.
When a shared activity is generated for a specific ini-
tiator, each other building occupant i is assigned a
cost value Ci. One occupant is then selected at ran-
dom, where the probability Pi of selecting occupant i
is determined from the cost values according to (1).
The selected occupant becomes a participant of the
shared activity. Similar random selections are made
from among the remaining occupants until all npo − 1
additional participants have been chosen.

Pi ∝ 2−Ci (1)

For participant selection, the cost Ci associated with
occupant i is obtained by evaluating the distance cost
function φ.

Ci = φ(di)

The distance cost is a function of di the distance be-
tween the base location of occupant i and the base lo-
cation of the initiator. Deriving the cost vs. distance
relationship from empirical data is important future
work. For the time being we propose the cost function
in (2), which is based on two assumptions. For occu-
pants in close proximity, we assume that distance has
relatively little effect on which occupants interact. As
travel times increase, we assume a linear relationship
between distance and cost.

φ(di) =
δ3

δ2 + 4
where δ =

di
D

(2)

Note that φ depends on the model parameter D.
Roughly speaking, two occupants within a distance of
D are likely to interact with one another, whereas two
occupants separated by a distance appreciably greater
thanD are likely to avoid each other. As shown in Fig-
ure 2, if an occupant’s base location is at a distance of
D from the initiator’s, the distance cost is 0.2. The oc-
cupant will then have a relatively high probability of
being selected as a participant. An occupant located
at twice that distance has a cost of 1 and a noticeably
smaller chance of being selected. For large and in-
creasing distances di, the cost function rises linearly
with a slope of 1/D, and the probability Pi approaches
zero.

Figure 2: Distance Cost φ(di)

Location Selection
When any activity, shared or solo, is generated for a
specific initiator, the location where the activity takes
place must be selected. The first step is to choose one
of three location selection methods based on the task
performed. The mapping between tasks and location
selection methods depends on the type of building; we
propose the mapping in Table 3 for office buildings.

Table 3: Office tasks and location selection methods
TASK LOCATION SELECTION

METHOD
Off Offsite Only

Desk Work Base Only
Informal Meeting Base Only
Formal Meeting Randomized

Tech Visit Randomized
Washroom Break Randomized

Onsite Break Randomized
Offsite Break Offsite Only

An activity with an Offisite Only task occurs outside
of the building. A Base Only task is performed at the
activity initiator’s base location, their cubicle for in-
stance. For a Randomized task, all locations desig-
nated for that task in the space layout are possibilities,
and one is chosen at random. The probability of se-
lecting a location is given by (1), the same formula
used for participant selection. In this case Pi is the
probability of selecting location i.
For location selection, the cost Ci associated with lo-
cation i is the sum of a distance cost φ(di) and a uti-
lization cost ψ(ni + npo).

Ci = φ(di) + ψ(ni + npo)

The distance cost is obtained from (2) as done for par-
ticipant selection, except that di is now the distance
between location i and the base location of the activ-
ity’s initiator. Thus nearby locations are favored.
The utilization cost is a function of ni + npo, the pro-
jected number of occupants at location i should that
location be selected. Here ni is the current number of
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occupants at location i. Again the cost function should
be derived from empirical data, but in the meantime
we propose a formula based on several assumptions.
One assumption is that people strive to fill spaces to
just under their capacities, leaving some extra space
for greater comfort or the possibility of additional par-
ticipants. We also assume that there is a slight aversion
to underutilization. It seems plausible, for example,
that a pair of office workers would deliberately meet
in a 3-person room in order to leave a large confer-
ence room empty for the benefit of their colleagues.
However, we assume people to be far more concerned
about overcrowding a space than using it inefficiently,
so the cost defined below rises dramatically after the
capacity Ni of location i is exceeded.

ψ(ni + npo) = 1 +
27

4
·
(
η3 − η2

)
where η =

ni + npo
Ni

Our proposed utilization cost function is plotted in
Figure 3. As indicated, an ideal location in terms of
size would become two thirds full if selected. The cost
of having too few occupants in a space is bounded by
1, the same as the cost of filling it to capacity. The ca-
pacity is not a hard limit, as spaces can become over-
crowded. However, as shown, the utilization cost in-
creases rapidly with overcrowding.

Figure 3: Utilization Cost ψ(ni + npo)

EXPERIMENT
Objectives and Model Preparation
The space layout shown as an example in Figure 1 is
the actual layout of a floor of an existing office build-
ing. We applied the proposed method to this office
space to gain insight into how effectively an occupant
model can be customized, and how accurately it can
be expected to predict space utilization.
The idea behind customization is that, ideally, the per-
sonas inferred from the generated schedules should
match the personas invented by the modeler. But due
to participation in shared activities, the behavior of an
occupant of one persona may be altered by the influ-

ence of occupants of other personas. We ran simu-
lations with and without spatial information to study
how the distance-based participant selection technique
affects persona attributes.
The other objective of the experiment was to study the
validity of the location selection technique. By ag-
gregating information found in thousands of generated
schedules, one can estimate the likelihood that any lo-
cation is occupied at any given time of day. The diffi-
culty lies in testing these space utilization predictions,
as real-world occupancy data is required. In the of-
fice environment used for our experiment, it is com-
mon practice to reserve meeting rooms ahead of time
using an electronic booking system. We aggregated
six months of these bookings and compared the results
with those obtained via simulation.
For the machine learning component of the model, we
supplied 207 historical schedules recorded by several
actual occupants of the building we modeled. With our
choice of personas, these occupants would all be clas-
sified as R&D. Recall that in practice these schedules
are to be packaged with simulation software. Ideally
there would be thousands of schedules, recorded by
more diverse sets of individuals.
To customize behavior, we distributed a ten-question
survey to all occupants on the floor. Responses to eight
questions were used to populate the input persona at-
tributes shown in Table 4. The occupants were also
asked how many days they worked from home or out
of town. Based on their answers, simulated R&D oc-
cupants were assigned a 90% chance of showing up at
all on any given day, M&S occupants were assigned a
40% chance, and F&IT occupants were assigned 80%.
The last question was used to group each respondent
into one of the three personas. Roughly half of the oc-
cupants responded: 16 of the R&D persona, 7 from
M&S, and 5 from F&IT. In practice we would not ex-
pect a modeler to conduct a survey to populate the per-
sonas. But to study the validity of our location selec-
tion technique, it was important to minimize inaccura-
cies in the requested behavior.
To interpret distance, we used D = 10 metres and as-
signed Euclidean distances to di. With our single-floor
model, the distance between an initiator’s location
[x̂, ŷ] and a candidate location [xi, yi] was approxi-
mated using di =

√
(xi − x̂)2 + (yi − ŷ)2. If a space

layout were to include several floors, one could use
di =

√
(xi − x̂)2 + (yi − ŷ)2 + γ·(zi − ẑ)2 where

γ > 1. The effect of the parameter γ would be to
discourage travel between floors. It is worth noting
that USSU employs a more accurate technique for cal-
culating distances. A graph traversal algorithm is used
to find the actual route an occupant would travel be-
tween locations, avoiding walls and other obstacles.
This technique could be used to obtain the distances
di supplied as arguments to our cost functions. The
difficulty lies in automatically constructing a graph of
possible paths from the space layout.
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Table 4: Comparison of input personas and personas inferred from simulation-generated schedules
PERSONA ATTRIBUTE INPUT SOLO NON-SPATIAL SPATIAL

R&D

Arrival 9:30–11:00 9:23–11:04 9:23–11:04 9:23–11:04
Departure 17:15–20:00 17:23–20:26 17:19–20:14 17:21–20:15

Informal Meeting Time 1:00–2:00 0:13–2:57 0:47–3:37 0:36–3:19
Formal Meeting Probability 50% 39% 48.4% 48.1%
Onsite Break Occurrences 1–5 0.1–3.7 0.3–5.5 0.2–5.2
Offsite Break Probability 40% 49.8% 65.2% 62.9%

M&S

Arrival 8:00–9:30 7:59–9:30 7:59–9:30 7:59–9:30
Departure 16:30–19:15 16:38–19:40 16:41–19:34 16:41–19:37

Informal Meeting Time 1:00–3:00 0:38–3:41 0:50–3:45 0:56–3:50
Formal Meeting Probability 10% 12% 28.7% 42.9%
Onsite Break Occurrences 0–4 0–3.8 0–4.5 0.2–4.8
Offsite Break Probability 30% 29% 41.3% 47.9%

F&IT

Arrival 8:15–9:00 8:14–9:00 8:14–9:00 8:14–9:00
Departure 16:30–18:15 16:26–18:49 16:41–18:25 16:40–18:33

Informal Meeting Time 1:00–5:00 0:09–4:38 0:14–3:33 0:48–3:47
Formal Meeting Probability 50% 48.2% 66.5% 52.6%
Onsite Break Occurrences 1–4 0.2–4.3 0.5–4.8 0.6–5.0
Offsite Break Probability 50% 53.2% 63.1% 61%

Simulated vs. Requested Persona Attributes
Table 4 compares the persona attributes supplied as in-
put data to those inferred from simulation results. For
each of the three personas in our model, the attributes
in the “SOLO” column were inferred from 10,000 in-
dependently generated occupant schedules. In this
case, even if a shared activity was generated (e.g. a
meeting), the initiator remained the lone participant.
The behavior reflected in these independent schedules
differs somewhat from the input personas because it
was also influenced by the 207 historical schedules.
The largest discrepancies are associated with the In-
formal Meeting Time attribute, the total time per day
spent in impromptu conservations taking place at oc-
cupants’ workstations. But for the most part the input
and solo attributes are similar, indicating effective cus-
tomization of behavior.
The non-spatial and spatial personas were inferred
from interdependent schedules. In both cases, the
schedules for all 60 occupants on the floor were gen-
erated simultaneously for each of 10,000 simulated
days at the office. These simulations included occu-
pant interaction; the initiator of a shared activity would
summon the npo − 1 other participants, influencing
their schedules. The influence of one occupant on an-
other increases the discrepancy between requested and
simulated behavior, particularly if their personas dif-
fer. The non-spatial simulation used the preexisting
method of Goldstein et al. (2010a) on its own, whereas
the spatial simulation used the extended method de-
scribed in this paper.
The purpose of this analysis is to assess the impact
of the proposed treatment of space on behavior cus-
tomization. We therefore focus on comparing the in-
put attributes to those inferred from the spatial simu-
lation. On the whole the requested behavior is clearly

reflected in the simulation results, though for certain
attributes there are noticeable discrepancies. For ex-
ample, the Offsite Break Probability is the probability
that an occupant takes at least one temporary break
outside the office building on any given day. For the
M&S persona a probability of 30% was requested, but
the spatial simulation yielded a probability of 47.9%.
In this case the simulated Offsite Break Probability ex-
ceeded the requested value for all three personas in
both the spatial and non-spatial results, so it is diffi-
cult to say whether the discrepancy is a result of our
new treatment of space or the preexisting approach to
occupant interaction.
The Formal Meeting Probability is the chance that an
occupant has at least one planned meeting in a meet-
ing room on any given day. For the M&S persona
the requested value was 10%, the preexisting approach
yielded 28.7%, and the spatial simulation produced an
even greater probability of 42.9%. In this case there
is reason to suspect that our treatment of space con-
tributed to the discrepancy. As seen in Figure 1, many
M&S occupants are located in close proximity to ei-
ther an R&D occupant or an F&IT occupant. With
a requested probability of 10% compared with 50%
for the other two personas, an M&S occupant is un-
likely to initiate a formal meeting. However, when
an R&D or F&IT occupant initiates a meeting, they
may well summon a nearby M&S occupant to partic-
ipate. Consequently, the behavior of the M&S occu-
pants changed by a considerable degree.
To summarize, the new distance-based participant se-
lection technique still allows for the customization of
behavior using persona attributes. But in some cases,
when compared with the preexisting non-spatial alter-
native, the new approach is more likely to “blend” the
behaviors of occupants of different personas.
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(a) Meeting Room A (b) Meeting Room B

(c) Meeting Room C (d) Meeting Room D
Figure 4: Meeting Room Utilization

Simulated vs. Booked Space Utilization
Figure 4 shows the predicted and measured probabil-
ities that various meeting rooms are occupied at any
given time of day. For each of the four meeting rooms
in the space layout, the predicted space utilization pro-
file was created by aggregating the 10,000 days worth
of interdependent schedules generated by the proposed
simulation method. The measured profiles were de-
rived from six months worth of bookings made by
real occupants to reserve the actual meeting rooms.
The booking data serves as ground truth for the ex-
periment. It reflects the real occupants’ meeting time
and location preferences, but was not used to calibrate
the model. An obvious weakness in this analysis is
that occupants sometimes use meeting rooms without
booking them, or book them without using them.
As shown in the space layout of Figure 1, Meeting
Rooms A and B have capacities of 6 and 12 respec-
tively, and are located near one another. The model
predicts, with a reasonable error, the overall demand
for both of these rooms combined. However, it seems
to underestimate the occupants’ preference for the
larger and somewhat more central Room B. Looking
at timing, the double-peaked shape of the booked pro-
files is reflected in the simulation. For Room A the
simulated morning and afternoon peaks occur an hour
too early. For Room B the morning peak is predicted
an hour early, but the afternoon peak is quite accurate.
The low overall simulated demand for Meeting Room
C, with a capacity of 3, seems consistent with the rel-

atively scarce bookings. However, the simulation in-
accurately concentrates the demand around 10 am and
2 pm. Located nearby, Room D has a capacity of 12.
It was booked far more often prior to 2 pm than pre-
dicted by the simulation, but after 2 pm the two pro-
files are in close agreement. Both of these rooms were
frequently reserved for day-long activities, neglecting
breaks. It is therefore possible that the dips predicted
around noon are more accurate than they appear.
A key objective of the proposed method is to pre-
dict space utilization with minimal input data, and in
this context the agreement between predicted and mea-
sured results is reasonable. The profiles would likely
have been closer had the 207 historical schedules been
recorded not only by R&D occupants, but by M&S and
F&IT occupants as well. However, if historical sched-
ules are to be packaged with simulation software and
used on multiple projects, this type of error is prac-
tically unavoidable. We note that in this experiment,
one effect of the distance cost function was to predict
greater use of the central Room B than the peripheral
Room D with the same capacity. At the same time, the
utilization cost function gave Room D a higher over-
all demand than the nearby but smaller Room C. The
bookings validate both of these predicted trends.

DISCUSSION
In the preexisting USSU system, a modeler supplies
detailed organizational information to control which
types of occupants interact. Our participant selection
technique avoids much of this input data, simplify-
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ing model preparation. However, occupants of one
persona may summon nearby occupants of other per-
sonas, which in some cases leads to discrepancies be-
tween requested and simulated behavior.
What could be done to adhere to requested behavior
while still allowing occupants of different personas
to interact? One possibility is to optimize behavioral
parameters by running numerous multi-occupant sim-
ulations. This pursuit may benefit from genetic al-
gorithms, as applied to occupancy prediction in Yu
(2010), as well as functional crowds (Pelechano et al.,
2008). Another question is whether one should de-
liberately allow simulated behavior to differ from re-
quested behavior. Theoretically, designers could run
simulations to see how space layout affects persona
attributes. Could such predictions be trustworthy?
Our location selection technique successfully pre-
dicted the more popular of two equally sized meeting
rooms at different locations, and the more popular of
two nearby meeting rooms of different sizes. Yet to
improve the cost functions and rigorously validate the
method, a vast amount of empirical data is needed. It
may be necessary to monitor and record the coordi-
nates of thousands of real occupants over time. To
overcome the effect of site-specific rules and conven-
tions on space utilization, numerous buildings would
have to be included in the study.
Two possible enhancements to the method deserve
mention. In the presented experiment, all simulated
occupants were assigned workstations on the floor. In
reality, parts of the floor may be occupied temporarily
by workers from other parts of the building, or visitors
from outside the building. These temporary occupants
could be modeled using “Offsite” base locations. An-
other modest enhancement is the calculation of occu-
pant densities for each space over time.
To go from predicting space utilization to energy use,
the proposed method must be integrated with energy
models as previously done with USSU (Hoes et al.,
2009). Our method would provide the number of oc-
cupants at various locations at any given time. Action-
oriented behavioral models would then predict the
manual manipulation of building controls at these lo-
cations (Mahdavi and Pröglhöf, 2009).

CONCLUSION
We have introduced novel probabilistic techniques for
selecting activity participants and locations in the con-
text of occupant behavior simulation. These tech-
niques were incorporated into a broader method that
uses historical schedules to automatically inform sim-
ulated behavior, personas to customize that behavior
on a per-project basis, and a space layout to provide
site-specific occupancy information. By limiting the
amount of required input data, we hope to encourage
the preparation of simulation-ready spatial occupant
models at the building design stage, improving all sub-
sequent energy use predictions.
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Empirically-Based Models of People’s Presence
and Actions in Buildings. In Proceedings of the In-
ternational IBPSA Conference, Glasglow, Scotland.

Page, J. 2007. Simulating Occupant Presence and Be-
haviour in Buildings. PhD thesis, École Polytech-
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