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The development and validation of equations
to predict grip force in the workplace:
contributions of muscle activity and posture

PETER J. KEIR* and JEREMY P.M. MOGK
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The inherent difficulty of measuring forces on the hand in ergonomic
workplace assessments has led to the need for equations to predict grip force.
A family of equations was developed, and validated, for the prediction of grip
force using forearm electromyography (six finger and wrist muscles) as well as
posture of the wrist (flexed, neutral and extended) and forearm (pronated,
neutral, supinated). Inclusion of muscle activity was necessary to explain over
85% of the grip force variance and was further improved with wrist posture
but not forearm posture. Posture itself had little predictive power without
muscle activity (<1%). Nominal wrist posture improved predictive power
more than the measured wrist angle. Inclusion of baseline muscle activity, the
activity required to simply hold the grip dynamometer, greatly improved grip
force predictions, especially at low force levels. While the complete model
using six muscles and posture was the most accurate, the detailed validation
and error analysis revealed that equations based on fewer components often
resulted in a negligible reduction in predictive strength. Error was typically
less than 10% under 50% of maximal grip force and around 15% over 50%
of maximal grip force. This study presents detailed error analyses to both
improve upon previous studies and to allow an educated decision to be made
on which muscles to monitor depending on expected force levels, costs and
error deemed acceptable by the potential user.
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1. Introduction

The inherent difficulty of measuring grip and hand forces in the workplace has led to the
development of alternate indirect methods by which to predict grip force. The
methodology to predict hand forces in the workplace developed by Armstrong et al.
(1979) has been widely adopted in various forms but more recent efforts to develop
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equations to predict grip force remain limited (Duque ez al. 1995, Claudon 1998, 2003).
The need to determine grip forces in the workplace stems from the link between pinch and
grip forces, especially when combined with non-neutral postures, and musculoskeletal
disorders of the upper extremity, such as carpal tunnel syndrome and tendonitis
(Silverstein et al. 1986).

Armstrong et al. (1979) presented a method to predict forces at the hand from the
position of the hand and fingers combined with muscle activity, which has been used to
assess the injury risk potential of manual jobs (e.g. Silverstein et al. 1986). Their method
created multiple posture-specific muscle activity —hand force calibration curves for each
individual, and matched task components to the closest posture using video analysis.
Since both the calibration and implementation procedures of Armstrong et al. (1979) are
relatively time consuming and specific to the individual, researchers have attempted to
develop less intensive procedures. Most efforts to simplify the process have related finger
(or wrist) muscle electromyography (EMQG) to grip force, which require only a single
(maximal) calibration trial and result in an equation that may be applied generally and is
not subject specific (Duque et al. 1995, Claudon 1998, 2003). This simplifies the
relationship between EMG and grip force, as co-contraction of the wrist muscles is
necessary to stabilize the wrist during gripping tasks (Snijders et al. 1987), as well as
maintain wrist posture against gravity (Mogk and Keir 2003a). Furthermore, whilst these
predictive equations have provided useful insights regarding grip force and muscle
activity, they are limited in their scope. For example, forearm rotation (pronation/
supination) has not been examined and the muscle activity required to hold a tool has
been disregarded (Duque ez al. 1995) or eliminated by using a supported grip dyna-
mometer (Claudon 1998, 2003). These factors appear to limit the applicability of these
equations within the workplace.

Although it might seem intuitive that the activity of the finger flexor muscles should
provide the best estimate of grip force, the redundant nature of the forearm musculature
and the need for co-contraction to maintain wrist posture complicate the relationship
between EMG and grip force (Mogk and Keir 2003a). Both the degree of synergist
activation and co-contraction of antagonist muscles have the potential to alter the net
force measured (Lawrence and De Luca 1983), as well as the muscle activity required to
produce a given force. While a nearly perfect linear relationship has been reported
between finger flexor EMG and finger force in the absence of extensor co-activation
(Danion et al. 2002), both flexors and extensors are active during gripping tasks (Snijders
et al. 1987, Claudon 1998, 2003, Mogk and Keir 2003a). Wrist and forearm posture affect
both muscle and moment arm lengths and thus the moment potential of a muscle (Loren
et al. 1996), which in turn alters EMG amplitude (Inbar et al. 1987) as well as muscle
synergies (Buchanan er al. 1989, Sergio and Ostry 1995). Whilst the relative muscle
activity associated with grip force in several postures was previously evaluated (Mogk
and Keir 2003a), a comprehensive investigation of forearm muscle activity and posture
contributions to grip force is needed to determine the nature of muscle selection on grip
force predictions across postures.

The purpose of this study was to present an equation or, more correctly, a family of
equations, to predict grip force by further analysing a comprehensive dataset, which
evaluated the effects of posture and grip force on forearm muscle activity (Mogk and Keir
2003a). The process for developing equations to predict isometric grip force based on
forearm EMG and posture has been presented. To address limitations of previous
equations and to improve transferability to the workplace, both wrist and finger
musculature were included and participants were also required to support the grip
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dynamometer. The complete family of equations is presented, as is the rationale for
selecting an acceptable equation to predict grip force based on maximizing accuracy of
the prediction and minimizing the number of input variables.

2. Methods

The data used in this study were collected previously and fully described in Mogk and
Keir (2003a), thus a brief overview is provided here. Ten healthy volunteers (five males
and five females) had their maximum grip force (Gripyax) determined in a mid-prone
forearm and neutral wrist posture using a grip dynamometer (MIE Medical Research
Ltd., UK; mass =450 g). Participants then performed exertions at five force levels (5, 50,
70 and 100% Gripmax, and 50 N) using a grip dynamometer (grip span of 5cm) in each
combination (nine in total) of three forearm (pronation, neutral/mid-prone and
supination) and three wrist postures (45° extension, neutral and 45° flexion). Participants
were seated upright with their right forearm resting on an adjustable horizontal platform,
while the hand, wrist and dynamometer were left unsupported. Posture was monitored
using a mirror apparatus that allowed wrist radioulnar deviation and flexion-extension
angles to be recorded with a single video camera. Radioulnar deviation was maintained
in neutral for all tests. Surface EMG was recorded from six forearm muscles: flexor
carpi radialis (FCR); flexor carpi ulnaris (FCU); flexor digitorum superficialis (FDS);
extensor carpi radialis (ECR); extensor carpi ulnaris (ECU); and extensor digitorum
communis (EDC). EMG signals were normalized to maximal voluntary electrical
activation (MVE) determined through a series of trials including maximal grip force
with voluntary isometric wrist flexion and extension, forceful voluntary wrist
circumduction, as well as resisted finger flexion and extension. Each experimental trial
lasted 10s, in which the participant held the dynamometer without exerting force
(‘baseline’) then ramped up to the target force level, which was held for 3s before
returning to baseline. Average EMG (AEMG) was calculated from the 3 Hz linear
envelope EMG over the 3s plateau at the target force, as well as during baseline prior
to each exertion. The relative grip force achieved for each trial was calculated as the
average force exerted over the same 3 s plateau. Visual feedback, using an oscilloscope,
enabled participants to maintain grip force exertions within 1.5% of the target force
level for most trials, with the exception of the 100% target level and 70% and 100% trials
with a flexed wrist. All trials were performed on each of 2days (‘Day 1’ and ‘Day 2°)
separated by a minimum of 4 and maximum of 7days. The complete dataset for each
day comprised 900 data points, which were used to develop (Day 1) and validate (Day 2)
the equations.

2.1. Equation development

Multiple regression analyses were used to predict grip force from AEMG and postural
data (figure 1). Analyses included linear, factorial and polynomial regressions
(STATISTICA, v. 6.0, StatSoft Inc., Tulsa, OK, USA). A decision was made a priori
to create the equations from Day 1 data and validate those equations using the data from
Day 2. Relative grip force (% Gripmax) Was input as the dependent variable, to be
predicted by various combinations of AEMG and posture data (independent variables).
Equations were initially created using all possible data from Day 1 (‘full dataset’).
Equations were developed using posture alone (forearm and/or wrist), muscle(s) alone
and muscle(s) with posture. Wrist posture was input as nominal data (extension=1,
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(a)  Statistical Equation Construction
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(b) Statistical Equation Validation
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Figure 1. The process of constructing (a) and validating (b) the statistical equations.
Ellipses represent inputs and rectangles represent outputs. Note that the equation
coeflicients determined from Day 1 data are carried over to the Day 2 data for the
purpose of validating each equation. EMG =electromyography; RMSE =root mean
square error; MAD =mean absolute difference.

neutral =2, flexion =3) and as the wrist angle in degrees as measured from videotape.
Forearm posture was input only as a nominal variable (pronation= 1, neutral=2 and
supination = 3). The number and combination of muscles input into each model was
manipulated to determine whether certain combinations of muscles would predict grip
forces better than others (17 combinations in total). Muscle combinations included: 1) all
muscles; 2) all flexor muscles; 3) all extensor muscles; 4) wrist flexors and extensors; 5)
wrist flexors; 6) wrist extensors; and 7) finger muscles. As occupational studies often
report the placement of electrodes over a ‘common muscle mass’, the following
combinations of wrist muscles were also examined: 1) FCR and ECR; 2) FCR and ECU;
3) FCU and ECR; and 4) FCU and ECU. Equations were developed for each muscle
individually as well. Gender was not included as a variable as it had previously been
determined that no significant differences existed once the data were normalized (Mogk
and Keir 2003a). Coefficients were included in each model if they were significant at a
level of p < 0.05; however, coefficients were typically significant at p < 0.001.

The importance of including muscle activity from simply holding the grip
dynamometer (i.e. 0% Gripn.x) Was examined by developing the equations in four
ways: 1) including all baseline (0% Gripy,.x) data (also called ‘full dataset’; 900 data
points in total); 2) including baseline data as the mean posture-specific activation for each
individual (also called ‘average baseline’; 540 data points); 3) subtracting baseline activity
from the AEMG of each grip exertion (also called ‘baseline subtracted’; 450 data points);
and 4) excluding baseline data (no zero point, also called ‘no baseline’; 450 data
points). Although baseline activity was recorded prior to each grip force exertion
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(450 data points), previous tests showed that baseline activity did not vary with the target
force to be exerted (Mogk and Keir 2003a). Consequently, the activity prior to each
exertion in a given posture was used to calculate a mean posture-specific baseline
activation level for each individual, effectively reducing baseline data from 450 to 90 data
points (‘average baseline’ dataset). Additionally, based on the apparent nonlinear
relationship between grip force and EMG (Duque et al. 1995, Claudon 1998), the effect of
splitting the dataset and generating one group of equations for forces <50% Gripyax, and
another for forces >50% Grippax Was examined.

The predictive ability of each model was judged based on the adjusted r* (explained
variance) as a measure of fit and an overall root mean square error (RMSE ogel,
measured in % Grippax) as a measure of predictive error magnitude, using the residual
sum of the squares.

2.2. Equation validation

Each equation was developed from Day 1 data and validated using data from Day 2
(figure 1). Goodness of fit was determined by the %, validation RMSE (RMSE,,j;q) and
the mean absolute difference (MAD) between the observed and predicted force data.
Both RMSE, ;g and MAD are reported in % Gripyax and summarize the overall error
for each model, with MAD thought to better represent the difference for the layperson. In
addition to overall error measures for each equation, EMG and posture were input for
specific levels of force (baseline, 50 N, forces <50% Grippnax and forces >50% Gripmax)
to examine the ability to predict grip force across force levels. This provided a more
detailed examination of the potential for certain muscles to be better predictors within
specific grip force ranges, and will aid future users in appropriate equation selection based
on the needs of their particular application.

3. Results

Equations developed using the full dataset (900 data points) resulted in the largest r* and
smallest RMSE ,,,4e1 Values compared to the reduced datasets (table 1). However, with
marginally larger error terms, use of the ‘average baseline’ dataset (540 data points) was
deemed more representative of the activity prior to grip exertions in each posture, and less
likely to bias the overall error of each model. Consequently, all equations presented
account for the average muscle activity required by each individual to simply hold the
dynamometer in each posture, without exerting a grip force.

3.1. Equation

The generic form of the complete model is found in equation 1. Second order models
improved r? by nearly 4% and RMSE,, o4 by 2% over simple linear multiple regression.
Third order polynomial and factorial models did not markedly improve 2 or RMSE,,,0del.
These relationships remained true for all test conditions.

6
Grip force:Z(ai-mi+bi~m?)+a7-FA+b7-FA2+a8~W+bg-W2+c (1)

i=1

where, Grip force is measured in % Gripmax, 7; 1s muscle activation (in % MVE) for
each muscle (from 1 to 6), FA is forearm posture (pronation=1, neutral=2 and
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supination =3), W is wrist posture (extension= 1, neutral=2 and flexion=3), ¢ is a
constant and represents the y-intercept, and a; and b, represent the first and second order
coeflicients for each variable, respectively. A select list of coefficients and error measures
for many equations, with and without wrist posture, is found in table 2.

3.1.1. Contribution of model components. Posture alone (wrist and/or forearm angle) was
not a good predictor of grip force, explaining less than 3.5% of the variance. However,
including wrist posture improved all multiple muscle equations to r* values of 0.84—0.89
with RMSE, ,qe1 less than 13%, except when only extensor muscles were used (table 2).
When used in combination with muscle activity, wrist posture increased the r* of all
models containing wrist muscles by approximately 3% and reduced RMSE,;,o4e1 by 1%.
Similarly, 2 and RMSE, o4 for equations derived from finger EMG were improved by
2.9-8.8% and 1.2—-2.7%, respectively, with the addition of wrist posture. Using the
measured wrist angle (in degrees) resulted in models of similar strength to those of
nominal form (i.e. 1, 2 or 3), thus nominal wrist posture was used. Forearm posture did
little to improve the predictive ability of each model, often not altering either 1> or
RMSE,oqe1 compared to those created from muscle activity alone (comparing across
columns in table 3). As a result, forearm posture was excluded to minimize the number of
input variables.

When only muscle activity was used (i.e. no wrist or forearm angles), equations developed
from individual or multiple flexor muscles only were always better predictors of grip force
than those based solely on extensor muscles. Predictive strength also improved with the
number of muscles included, with the exception that single flexor muscles were better than
any combination of extensor muscles. Further examination of the EMG input revealed
increased predictive strength when baseline data (0% Gripy,ax) Were included with the other
force levels, improving r* and RMSE, o4 values by 2—6% and 0.4—2.0%, respectively.

The most accurate model was based on all six muscles with wrist posture; however, the
coefficient for the finger flexor activity (FDS) was not significant and fell out of the final
equation (table 2). The paired wrist muscle models were almost as accurate as the full
model. For example, the equation based on the combination of FCR and ECR (with
wrist posture) had an r? of nearly 90% and RMSE,,,oqe1 only 0.4% higher than that of the
full model. As a rule, single muscles were not as good as multiple muscle models. Of the
single muscle models, the finger muscles (FDS and EDC) were the best predictors of grip
force for the flexor and extensor muscles, respectively, once wrist posture was included.
As a single input variable, ECU had the least predictive power, explaining less than 75%
of the variance.

3.2. Model validation (application of Day 2 data)

3.2.1. Full data range equations. Day 2 grip forces were well predicted using the
equations developed from Day 1 data (r*=0.819 + 0.056 over all equations; figure 2).
Both 1 and RMSE values were remarkably similar between equation development
(Day 1 data) and validation with Day 2 data (table 3 vs. table 4). The MAD between the
observed and predicted Day 2 grip forces was always 2.4—-5.4% lower than the
RMSEvalid (table 4)

3.2.2. Full data range equations: prediction dependence on input force range. To test the
usability of the equations based on the full data range, specific ranges of data were
evaluated in isolation. Error increased as the grip force became greater (table 5).
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Figure 2. Correlation between observed grip force values and those predicted by models
developed from ‘All’ muscle data (a and b), ‘flexor carpi radialis (FCR) + extensor carpi
radialis (ECR)’ (c and d) and ‘Finger muscles’ (e and f), plus wrist posture. Graphs a, ¢
and e represent the development of the model (Day 1 data — Day 1 model), whilst graphs
b, d and f are for model validation (Day 2 data — Day 1 model). Different symbols are
used to distinguish between the data points for each wrist posture, and provide
information on the error distribution between force levels. RMSE =root mean square
error; MAD = mean absolute difference.
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Specifically, when grip force was limited to < 50% Grippax (including baseline), RMSE
was 1.2—3.3% lower than the overall (full range) RMSE,,;4, whilst the RMSE for forces
above 50% was 2.6—5.8% higher, regardless of the input variables. When the baseline
data were excluded from the < 50% Gripyax validation tests, error became 0.8—1.8%
lower than that of the full range validation (RMSE,,;;q). As with the model development,
RMSE,.iq decreased with the inclusion of wrist posture, largely due to improved
prediction (1.7-3.6% lower) of forces greater than 50% Gripy.x (table 5). Models using
some combination of wrist flexor and extensor muscles were better predictors of grip
forces below 50% Gripax than finger muscles, but their ability to predict forces above
50% Gripmax Was similar.

4. Discussion

In this study, a family of equations was developed to predict grip force (from zero to
maximum) using muscle activity and posture, with an emphasis on the lower range
(0 to 50%) to reflect the distribution of forces in the workplace. A number of equations
were developed using reduced datasets and provided useful alternatives to the complete
model by requiring fewer muscles while maintaining accuracy. By using six forearm
muscles under a wide range of conditions in both men and women, and a validation
process that included a detailed assessment of error, this study represents a more
comprehensive evaluation of grip force prediction than previously available. Previous
efforts in this area have included only one or two muscles, avoided forces below
20-30% of maximum and have generally been limited to men (Duque ez al. 1995) or
women (Claudon 1998). It was found that muscle activity was the most important
input, being required to predict over 85% of the variance. Although posture alone had
little predictive power (<4%), the accuracy of equations developed using muscle
activations improved with wrist posture but were not markedly changed with forearm
posture. In addition to monitoring more muscles than previous research, lower forces
(0%, 5% and 50 N, the latter ranging from about 8—25% maximum) were included,
which relate more closely with a suggested limit of 17% of maximum to prevent fatigue
during intermittent hand gripping and 10% during continuous gripping (Bystrém and
Fransson-Hall 1994).

Although the full equation with all six muscles and wrist posture provided the best
statistical estimate of grip force, reducing the number of input muscles did not necessarily
compromise the usefulness of the resulting equation. For example, equations developed
from a combination of flexor and extensor muscles (e.g. ‘FCR +ECR’ or the ‘finger
muscles’) resulted in RMSE and r? values comparable to the full model (table 3 and
figure 2). Despite the finger muscles (FDS and EDC) representing the best single muscle
predictors for each respective muscle group (table 3), the finger flexor (FDS) coefficients
were non-significant when all six muscles were used to develop the equations and thus did
not appear in the final model (table 2). Flexor muscles proved to be stronger predictors of
grip force than any of the extensors, as was previously reported during low-level pinch
force exertions (Maier and Hepp-Reymond 1995). Under controlled conditions that
allowed activation of the extrinsic finger flexors in the absence of extensor co-activation,
finger flexor EMG has been nearly perfectly related to measured finger forces (Danion
et al. 2002). However, gripping tasks require concurrent activation of the finger flexor
and extensor muscles (Claudon 1998, 2003, Mogk and Keir 2003a) resulting in co-
contraction, which would alter the EMG—force relationship. It is unlikely that
the statistical similarity between models could be explained by EMG cross-talk between
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forearm muscles, as suggested by a previous study examining electrode placement and
spacing (Mogk and Keir 2003b).

The inclusion of posture had a relatively small effect on the overall predictive strength
in the development (table 3) and validation (table 4) of most models. The benefit of
including wrist posture was most evident above 50% Gripyax resulting in a 2.0-3.5%
decrease in RMSE, whilst the error at baseline increased by 1-4% over muscle activity
alone (table 5). Finger muscle models were the most sensitive to wrist posture (table 3).
Forearm posture made little to no improvement over muscles alone, with the exception of
those models consisting of only wrist extensor muscles, either individually or in
combination, particularly with ECU (table 3). Perhaps the most interesting finding in this
study was the similar predictive power between nominal and actual wrist posture. Whilst
this may have been a result of reduced variation in the wrist angles set by the protocol
(within about 5° of the desired posture), the use of nominal wrist posture may allow
ergonomists the liberty of eschewing the sometimes cumbersome and expensive wrist
goniometers, as previously required (Duque et al. 1995, Claudon 1998, 2003). In addition,
it may allow a more normal activity profile with fewer potential interruptions to the
worker. However, further testing is required to determine whether nominal wrist angles
effectively represent the continuum of wrist postures, with potential issues at the
boundaries of the categories (e.g. ‘neutral’ vs. ‘flexion’). Given the trade-off in predictive
accuracy with the addition of nominal wrist posture between high (>50%) and low
forces, it could be argued that wrist posture is not necessary to estimate grip force under
certain conditions.

The decision to include baseline muscle activity (the activity associated with holding
the grip force dynamometer in each posture) was particularly important given that the
inclusion of baseline data (0% Gripyay) increased explained variance by 6% and reduced
RMSE by up to 2%. This effect was seen mainly at low force levels. Baseline muscle
activity was included, in part, because it has previously been reported to have a large
effect on muscle force estimation at the wrist (Buchanan et al. 1993). In the current study,
most equations resulted in a negative y-intercept (table 2), which would predict negative
grip forces in the absence of muscle activity (which is possible mathematically but not
physiologically). This was expected as the grip dynamometer was reset to zero prior to
each exertion, and relates to the force required to hold the dynamometer, which
amounted to approximately 10 N or 2—5% of each participant’s maximum. Negative
intercepts could have been avoided by zeroing the dynamometer prior to it being held by
the participant; however, this would have introduced errors at low force levels due to the
orientation of the dynamometer. Previous attempts to develop equations to predict grip
force avoided baseline muscle activity in different ways. Duque er al. (1995) deemed
baseline activity ‘negligible’ and thus omitted it, despite results indicating that almost
30% activation was required to hold the flexed posture. Claudon (1998, 2003) supported
the dynamometer, but also imposed each posture by fixing the orientation of the
dynamometer, which may alter muscle activation during gripping (Johansson et al. 2004).
The current results indicate that the muscle activity associated with holding the
dynamometer in specific postures is a large determinant of low level grip force and should
not be disregarded as has been done previously, especially considering that the
dynamometer used is much lighter (by over 50%) than even light tools (e.g. pneumatic
nutrunner; Lin et al. 2003).

One goal of this study was to determine the nature of the errors associated with the
equations, especially relating to error magnitude for different ranges of force, as
previous research has been very limited in this regard. Comprehensive error analysis



Predicting grip force in the workplace 1257

was conducted by incorporating a test (Day 2) dataset in its entirety and by isolating
specific grip force ranges (table 5). It was found that error was not constant across
force ranges. Whilst almost 70% of all grip force predictions were within 10%
Gripmax of the measured values (tables 2 and 5), error increased with relative grip
force (table 5). By limiting the range of validation grip force data, grip forces were
generally predicted within 7% Gripn.x (RMSE and MAD) at baseline, increasing by
1-2% for grip forces less than 50% (including baseline), to near 10% for the same
range without using baseline data. Predictions above 50% were still within 15%
maximum when all components were included (table 5). It should be noted that,
although table 1 may give reason to use the ‘full dataset’ version of the equations, the
additional ‘baseline’ data points biased the error measures at the lower grip forces
with higher error over 50% Gripmax, leading to the decision to use the average
baseline. Previous studies have been very limited in their assessments of error.
Claudon (1998) reported an overall error of 9.9% and, although it was not formally
presented, suggested the predictive error was less than 20% for forces below 50% and
less than 40% for forces above 50% maximum for a two muscle model. Duque et al.
(1995) presented only correlation coefficients and suggested that there was ‘a good
approximation” of forces under 60% of maximum for their one muscle model. It
should be noted that the overall error presented by Claudon (1998) is comparable to
the present equations based on muscle pairs and wrist posture (RMSE,,;q=10.3—
12.3%; table 4), with a marginally larger error in the current study likely due to the
increased variance in grip force of using of an unsupported dynamometer. In a recent
study, Claudon (2003) reported an error of 6.9% using continuous and linearly
increasing forces between 0 and 70%, which is similar to the current study when
restricted to the same input data range. The validation analysis presented in this study
was included to fill a void of such measurements in previous reports and to allow
educated decisions on which muscles to monitor depending on expected force levels
and error deemed acceptable by the user.

There are limitations to the current study. Wrist posture was maintained in neutral
radioulnar deviation and the elbow angle remained constant, thus the grip force
predictions may be affected if these angles changed. Although the procedure consisted of
a time varying force profile, the analysis used a 3 s mean during the isometric isotonic
portion. The dynamometer was set at a grip span of 50 mm for all participants, other
studies have used 45 mm (Duque et al. 1995, Claudon 1998, 2003), thus subtle differences
between studies may exist. Additionally, the mass of the dynamometer (450 g) is less than
many hand tools; for example, the lightest pneumatic nutrunner used in a recent study
was 1.4kg (Lin et al. 2003). All of the equations were developed using the full range of
grip forces (0 to maximum), thus it could be argued that the results may have differed
had the equations been based on grip force ranges. However, the equations were
generated by splitting the dataset at 50% maximum and no benefit was found over the
equations based on the full data range. Finally, the validation process used in this study
may be criticized for consisting of the same participants repeating the conditions used in
the development of the equations. However, the validation data is a complete dataset
collected on a separate occasion allowing assessment of day-to-day reliability of the
equation(s) and represents a large improvement over the limited validations of previous
efforts.

Rather than suggesting that an ‘ideal’ equation exists for all circumstances, a family
of equations was presented, developed using a number of muscles and postures with a
comprehensive assessment of the errors involved. It was found that inclusion of muscle
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activity in the model was required to explain over 85% of the grip force variance, and
whilst posture alone had little predictive power, the inclusion of wrist posture
improved predictions with muscle activity. It was also found that nominal wrist
posture was more effective than measured angle. Baseline muscle activity, the activity
required to simply hold the dynamometer without actively exerting a grip force, was
an important inclusion and improved prediction of grip, especially at low levels.
Detailed error analysis revealed that equations based on fewer components often
resulted in a negligible reduction in predictive strength, thus users may select an
equation that reflects the limitations of their ergonomic assessment or may allow the
user to choose to reduce the detail of their assessment based on knowing the errors
associated with each equation. Additionally, if the ergonomist requires an actual grip
force, the relative value predicted by the equation may be multiplied by the worker’s
maximum. Realism was improved by requiring the grip dynamometer to be supported
by the subject; however, there remains a need to further examine force varying
isometric contractions as well as unconstrained dynamic tasks typical in the workplace,
including those with a pinch grip. Whilst these equations stand on their own, their full
value might be realized combined with the extra activation required to stabilize a tool
in the hand, such as described with the ‘moment wrench’ (Wells and Greig 2001).
These findings provide a useful refinement to long-standing grip force prediction
methods by providing insight as to the muscle(s) to monitor and the need to directly
monitor posture.
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