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ABSTRACT 

We intend to develop a computer-aided design (CAD) system that takes design problem definitions 

as input and presents a set of geometries that solves the problem. For such system, we perceive 

using a controlled natural language (CNL) as one method within a multimodal interface to capture 

some of the required input. To evaluate the feasibility of using a CNL for problem definitions, we 

conducted a user study with 18 participants. We found that using a CNL increases the quality of 

problem definition statements for functional requirements compared to statements written in natural 

language. While a CNL limits the breadth of problem definitions, it can achieve a balance between 

natural expression and formal specification of problem definitions.  
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1. INTRODUCTION 
Commercial computer-aided design (CAD) systems 

mainly support modelling, simulation, and analysis 

of design solutions. However, they lack capabilities 

to understand design problems and to generate 

corresponding solutions. To address this challenge, 

we envision a new CAD system that can create 

multiple design spaces based on problem 

descriptions and explore sets of optimal solutions 

within those spaces. The system would solve 

constrained optimization problems formulated based 

on the design goals specified by a designer, e.g., 

optimize a certain property of the design while 

preserving design constraints and parameters.  

To enable the envisioned system, a designer’s 

definition of design problems must be taken as 

input. The key part of problem definitions involves 

identifying the desired functions of a design (Pahl 

and Beitz, 1996). In addition, because our problem 

solving approach is rooted on optimization, we must 

capture constraints, which define feasible solutions, 

and objectives, which are used to judge how well 

solutions solve the problem (McCahan, 2013). The 

definition can also include descriptions of the design 

environment (Zeng, 2011), e.g., mechanical 

interactions and spatial configuration. 

We are considering multiple user interfaces for 

capturing problem definitions. Grossman et al. 

(2012) found that traditional menu-toolbar-icon 

centric graphical user interfaces (GUI) often require 

designers to spend much of their time learning and 

managing the interface. Therefore, we are also 

investigating more natural interfaces such as gesture 

(Wang et al, 2011), sketch (Valentine et al, 2013), 

speech (Kou et al, 2010), or a combination of 

interfaces (Sharma et al, 2011; Nanjundaswamy et 

al, 2013). The main challenge is identifying which 

interface is appropriate for capturing different types 

of problem definition information. 



  

 

For capturing high-level semantic information 

such as the functions, objectives, and constraints of 

a design, using a natural language interface could be 

ideal. Ullman (1992) observed that the initials goals 

of most mechanical design problems are expressed 

in a written or verbal language. However, using a 

natural language interface is challenging because of 

ambiguities and complexities involved in 

understanding a human-oriented language. 

One approach in enabling natural language input 

is to use a controlled natural language (CNL). A 

CNL reduces ambiguities in a language by 

restricting its syntax and lexicons. Our eventual goal 

is to develop a CNL that can specify some of the 

problem definition information required by 

constrained optimization procedures. We aim to 

achieve a balance between the expressive power of 

the language and its computational complexity.  

The main goal of the current paper is to examine 

the feasibility of using a CNL to express problem 

definition statements for design. We conducted a 

user study with engineering graduate students and 

asked them to write down problem definition 

statements in either natural language or a CNL. We 

also asked the participants who wrote statements in 

natural language to translate the statements into a 

CNL. We then evaluated the quality and quantity of 

problem definition statements written in natural 

language compared to those written in a CNL (either 

written originally or translated from natural 

language). Although the current paper focuses only 

on the CNL input, in the future we plan to integrate 

a CNL within a multimodal interface for our 

envisioned CAD system. 

2. RELATED WORK 
Few studies have investigated using natural 

language as problem definition input for CAD. Most 

research on natural language input for CAD has 

focused on enabling users to use a predefined set of 

voice commands to execute existing CAD 

operations (Kou et al, 2010; Sharma et al, 2011; 

Nanjundaswamy et al, 2013). 

Peterson et al. (1994) created a system called KA 

that takes natural language descriptions of design 

problems as input and finds analogous solutions 

based on the model-based design problem-solving 

approach. They resolved the challenges of natural 

language understanding through interaction between 

its natural language interface and problem-solving 

module. For example, KA leaves some ambiguities 

of natural language input to be resolved by the 

problem-solving module. 

Chen et al. (2007) also tackled the problem of 

understanding natural language input, particularly 

for analysing product requirements. The authors 

used lexical, syntactic, and structural analysis to 

translate natural language descriptions in complete 

sentences into formal structure diagrams. Their 

formalized output could potentially support 

subsequent computational design procedures. 

To reduce the computational complexity and 

ambiguities in processing natural language input, a 

controlled natural language (CNL) could be used. A 

CNL is a precisely defined subset of a natural 

language that restricts the syntax and lexicons. A 

CNL can be translated automatically into a formal 

target language that can be used for automated 

reasoning. In addition, users only need to learn the 

subset of syntax and lexicons, instead of an entirely 

new interface or input language for a CAD system. 

Early examples of CNL include Cleopatra, a CNL 

interface introduced by Samad and Director (1985) 

for CAD commands input. CNL has also gained 

much attention as a high-level interface method to 

knowledge-based systems; see Schwitter (2010) and 

references therein. For automatic requirements 

analysis for software development, Requirements 

Analysis Tool by Sarkar et al. (2012) also uses a 

CNL to input software requirements. 

3. METHODS 
We conducted a user study to evaluate the feasibility 

of using a CNL as problem definitions for design. 

3.1. PARTICIPANTS 
Participants consisted of 18 MASc/MEng/PhD 

graduate students from the Mechanical and 

Industrial Engineering Department at the University 

of Toronto. All participants had experience working 

with multiple design projects. Eight participants had 

industry experience related to engineering design. 

3.2. DESIGN PROBLEM 
Participants were asked to write problem definition 

statements for the problem of designing a bike rack. 

The problem was chosen for its relative simplicity. 

Table-1 shows the instruction and design problem 

presented to participants.  

Table 1 – Instruction and design problem given to participants 

Please list problem definition statements for designing a 

lightweight bike rack for a car. Images of a typical car and a 

bicycle are shown below. List all relevant functional 

requirements: e.g., functions, objectives, and constraints of the 

bike rack, as well as some properties of interacting 

(environment) objects. Use a single, complete sentence to 

write each problem definition 

statement. Generate at least one 

statement for each category. Use 

the same object names [roof, 

trunk, bumper, bicycle] as 

labelled on the image. 

3.3. CONTROLLED NATURAL LANGUAGE 
We created a CNL that could be used to describe the 

design problem chosen for the study. We assumed 



  

 

that a solution for the problem must support loads 

from other objects while anchoring itself on another. 

Thus, the CNL was designed to describe problem 

definition statements for a simple statics problem. 

Another important criterion in creating the CNL 

was the expressive power necessary to formulate a 

constrained optimization problem, the requirement 

for our envisioned CAD system. This criterion 

framed the semantic categories of the CNL, and 

subsequently its syntax and lexicons. 

3.3.1. Semantic Categories 
By semantic categories, we mean the types of 

problem definition statements that describe different 

aspects of the design problem. The categories 

include functions, objectives, and constraints of the 

design, as well as properties of environment objects 

(Table-2). The definitions have been mostly adapted 

from a reference text (McCahan, 2013) for a first-

year general engineering design course. 

Table 2 – Definitions and examples of each semantic category 

Functions Definition: Functions describe what the design 

must do. Functions should not describe how 

well the design should perform. 

Example: “The design must support the 

weight of the shelf.” 

Objectives Definition: Objectives are used to judge how 

well the design solves the problem. They 

should include evaluation criteria. 

Example: “The weight of the design must be 

minimized.” 

Constraints Definition: Constraints set absolute limits that 

the design should not violate. Limits should be 

defined in quantifiable measures. 

Example: “The width of the design cannot be 

greater than 3cm.” 

Properties 

of environ. 

objects 

Definition: Objects that will interact with the 

design may have properties that must be 

considered when designing the solution.  

Example: “The weight of the shelf is 15kg.” 

3.3.2. Syntax 
Table-3 shows the basic syntax created for the user 

study. We recognize that the current syntax is not 

expressive enough to describe all relevant 

information for statics problems. We focused on 

limiting the allowed syntax to remove any 

ambiguity and reduce the time required by 

participants to learn the syntax. This consideration 

was also taken in creating the lexicons. 

3.3.3. Lexicons 
Table-4 lists lexicons used for our user study. The 

Object set contains objects specific to the bike rack 

design problem. The Function set is selected from 

the primary, secondary, and tertiary function terms 

from the functional basis (Hirtz et al, 2002). The 

lead author selected only the terms that are deeemed 

relevant to statics problems. The ObjectiveFunc set 

is created based on the assumption that optimization 

involves maximizing or minimizing a certain 

property. Lexicons for MechQuant, GeomQuant, 

and MathOperator were created based on the 

authors’ knowledge of statics.  

Table 3 – Syntax used for the user study 

Functions - The design should Function (MechQuant) 

(preposition|of) Object 

- The design should Function (MechQuant) 

(preposition|of) Object (preposition) Object 

- The design should Function Object (NumValue) 

(preposition) Object 

Objectives 

 
- MechQuant of the design must be ObjectiveFunc 
- GeomQuant of the design must be ObjectiveFunc 

Constraints - MechQuant of the design must be MathOperator 

NumValue 

- GeomQuant of the design must be MathOperator 

NumValue 

- MechQuant of the design must be MathOperator 

MechQuant of Object 

- GeomQuant of the design must be MathOperator 

GeomQuant of Design|Object 

Environ. 

objects: 

- MechQuant of Object is NumValue 

- GeomQuant of Object is NumValue 

Table 4 – Lexicons used for the user study  

Object bicycle, trunk, roof, bumper 

Function separate, divide, distribute, transfer, transmit, 

guide, translate, connect, couple, join, link, 

stop, prevent, inhibit, store, contain, collect, 

supply, support, stabilize, secure, position 

ObjectiveFunc minimize, maximize 

MechQuant force, load, pressure, torque, weight, strength 

GeomQuant length, width, height, thickness, depth, area, 

volume, clearance, interference, distance 

MathOperator greater than, smaller than, equal to, different 

from 

NumValue any numerical number + unit 

3.4. EXPERIMENTAL CONDITIONS 
Each participant was randomly assigned to one of 

the two conditions described below. A between-

subjects design was used (Table-5). 

Table 5 – Experimental design. The colour codes/shades are 

used in our figures for convenient reference. 

CNL-only 

condition 

Task:  

Write statements 

in CNL (20 min) 

 

 

NL-CNL 

condition: 

Task 1:  

Write statements 

in NL (20 min) 

Task 2:  

Translate NL statements  

to CNL (20 min) 

 

CNL-only condition: Participants in this 

condition were asked to use the syntax and lexicons 

(Tables-3 and -4), given at the outset of the study 

session, to generate problem definition statements. 

Twenty minutes were given to complete the task. 

NL-CNL condition: Participants in this condition 

performed two tasks. They were first asked to 

generate problem definition statements on their own, 

without any syntax or lexicons provided. Twenty 

minutes were given for the first task. In the second 

task, participants were asked to translate, if they 

Compare 
 

 

 

Compare 
 

 

 



  

 

could, their statements into the CNL based on the 

syntax and lexicons provided (Tables-3 and -4). If 

they wanted, they could also generate additional 

statements using the syntax and lexicons. Twenty 

minutes were also given for the second task. 

Both conditions were asked to write at least one 

statement in each semantic category shown in 

Table-2. For clarification, all participants received 

the definitions of semantic categories. 

Our design of the experiment allows two different 

comparisons of data. First, we can compare between 

conditions; statements generated in the first task of 

the NL-CNL condition vs. the CNL-only condition. 

This comparison evaluates the effect of using a CNL 

in writing original problem definition statements. 

We can also compare statements generated between 

the first task and the second task in the NL-CNL 

condition. This comparison evaluates the feasibility 

of translating natural language problem definition 

statements into a CNL. 

3.5. EVALUATION 
Number of statements: The number of statements 

generated was tallied for each task to measure the 

fluency of the problem definition process.  

Quality of statements: The criteria used for 

quality ratings were the definitions of semantic 

categories in Table-2, based on our need to 

formulate constrained optimization problems.  We 

recruited two independent raters, teaching assistants 

of a first-year general engineering design course at 

the University of Toronto, to evaluate the quality of 

statements based on the definitions. The raters had 

been trained to evaluate design reports containing 

problem statements based on the same reference text 

(McCahan, 2013) used to create the definitions in 

Table-2. The raters did not know any information 

about the syntax or lexicons that participants used. 

The ratings were given in a Likert scale from 1 (low 

quality) to 7 (high quality). We used the average of 

the two raters’ ratings for the analysis 

(ICC(3,2)=.709, F=3.44, p<.001). 

Easiness/usefulness of the CNL: These measures 

examine how participants’ perceived easiness or 

usefulness of using the syntax and lexicons differs 

between: 1) writing original problem definition 

statements in the CNL vs. 2) translating problem 

definition statements first written in natural 

language into the CNL. The following questions 

were asked after the experimental tasks: 

1) On a scale of 1 to 7 (1=difficult, 7=easy), how 

would you rate your experience of using the 

CNL to write problem definition statements? 

2) On a scale of 1 to 7 (1=difficult, 7=easy), how 

would you rate the usefulness of using the 

CNL to write problem definition statements? 

Percentage of NL statements translated to CNL: 

For Task 2 of the NL-CNL condition, participants 

could not translate some of their natural language 

statements into the CNL. The percentage of those 

instances likely indicates the limitations of the CNL. 

Statements generated for the “properties of 

environment objects” category were excluded from 

our analysis. We observed that most participants 

from the NL-CNL condition misunderstood the 

category as describing the environment in which the 

design will operate, e.g., road conditions, weather. 

Because the statements generated between the two 

conditions varied significantly, we focused our 

analysis on other semantic categories. 

3.6. EXPERIMENTAL HYPOTHESES 
We hypothesized that using a CNL increases the 

quality of problem definition statements while 

decreasing the number of statements because of its 

limited expressiveness. 

4. RESULTS 

4.1. NUMBER OF STATEMENTS 
Figure 1 shows that participants generated a similar 

number of statements in the CNL vs. natural 

language, t(16)=.145, p=.886.
1
 The results suggest 

that using a CNL and natural language resulted in 

similar fluency in writing problem definition 

statements.  

However, the number of statements tends to 

decrease when translating from natural language 

into a CNL, t(16)=1.52, p=.149.
1
 This indicates that 

participants often could not express their original 

statements in the CNL. 
 

 

Figure 1 – Comparison of the number of problem definition 

statements generated. Error bars indicate standard error. 

4.2. QUALITY 
Figure-2 compares the quality of statements for each 

semantic category. For functions, the differences in 

quality were not statistically significant: CNL-only 

vs. NL-CNL task 1, t(16)=2.04, p=.058 and NL-

CNL task 1 vs. task 2, t(16)=-2.00, p=.133.
2
 These 

results indicate that participants, all trained in 

engineering, could have already learned consistent 

ways similar to our CNL to define design functions. 

We found that the quality of objective statements 

was significantly higher if they are written in the 

CNL compared to natural language: CNL-only vs. 

                                                                 
1 CNL-only: M=6.67, SD=1.00; NL-CNL task 1: M=6.56, SD=2.07; NL-CNL task 2: M=5.22, SD=1.64 
2 CNL-only: M=5.14, SD=.72; NL-CNL task 1: M=4.08, SD=1.37;  NL-CNL task 2: M=5.20, SD=.95 



  

 

NL-CNL task 1, t(16)=6.76, p=.000.
3
 Translating 

objective statements written in natural language into 

the CNL also significantly increases the quality: 

NL-CNL task 1 vs. task 2, t(16)=-4.34, p=.001.
3
 

 

 

Figure 2 – Comparison of quality ratings (rated out of 7) on the 

statements. Error bars indicate standard error. 

Similarly, statistically significant differences are 

observed in the quality of constraint statements: 

CNL-only vs. NL-CNL task 1, t(16)=2.47, p=.025 

and NL-CNL task 1 vs. task 2, t(16)=-3.02, p=.008.
4
  

Overall, the results confirm that using a CNL 

increases the quality of problem definitions. 

4.3. EASINESS AND USEFULNESS 
Figure-3 shows that participants tend to assign high 

and medium scores for the usefulness and easiness 

of using the CNL, respectively. It is particularly 

encouraging to see high usefulness scores for the 

CNL-only condition. 
 

 

Figure 3 – Comparison of perceived usefulness and easiness 

(rated out of 7) of the CNL. Error bars indicate standard error. 

The perceived usefulness was higher if the CNL 

was used right from the beginning, rather than used 

to translate statements already written in natural 

language, t(16)=2.48, p=.025.
5
 Participants of the 

NL-CNL condition could not express some of their 

original statements written in natural language. In 

addition, the NL-CNL condition participants likely 

evaluated the usefulness of the CNL relative to 

writing statements in natural language.  

The perceived easiness did not vary much 

between the two cases, t(16)=.189, p=.852.
6
  

4.4. TRANSLATION FROM NL TO CNL 
Figure-4 shows the percentage of statements written 

in natural language that the NL-CNL condition 

participants could translate into CNL statements. 

                                                                 
3 CNL-only: M=4.95, SD=.44; NL-CNL task 1: M=2.71, SD=.89; NL-CNL task 2: M=4.56, SD=.91 
4 CNL-only: M=4.42, SD=.75; NL-CNL task 1: M=2.99, SD=1.56; NL-CNL task 2: M=4.97, SD=1.21 
5 CNL-only: M=6.00, SD=.50; NL-CNL: M=4.78, SD=1.39 
6 CNL-only: M=4.11, SD=.93; NL-CNL: M=4.00, SD=1.50 

Overall, 52.5% of statements could be translated, 

indicating the limited breadth on the types of 

problem definitions that the CNL can express. 

Participants were able to translate 71.4% of 

function statements, 39.1% of objective statements, 

and 54.5% of constraint statements. Again, function 

statements written in natural language did not seem 

to differ much from statements written in the CNL. 
 

 

Figure 4 – Percentage of NL statements for each semantic 

category translated into CNL statements (NL-CNL condition) 

5. DISCUSSION 
Our study showed that a simplified CNL guided 

participants to specify problem definitions in 

appropriate semantic categories created for our 

envisioned CAD system. Without the CNL, many 

participants in the NL-CNL condition seem to have 

mistaken the purpose of defining objectives and 

constraints. Instead, the participants described non-

functional requirements such as affordances, 

usability, safety, etc. as objectives or constraints. By 

using the CNL, participants were able to frame the 

problem as a constrained optimization problem 

focusing on functional requirements. 

The CNL also enabled participants to identify 

specific quantities that could be used to judge or 

limit solutions. For example, participants without 

the CNL tend to write statements such as “The 

design needs to be not too bulky” or “The design 

must not block the rear view.” While these are valid 

design considerations, more precise and quantifiable 

measures are preferred in problem definitions 

(Ullman, 1992; Pahl and Beitz, 1996; McCahan 

2013). Using the CNL, participants could write 

more specific definitions such as “Volume of the 

design must be less than […].” 

In addition, some participants expressed that the 

lexicons helped them identify new functional 

requirements. For instance, the terms listed under 

“MechQuant,” e.g., “torque,” “pressure,” and 

“weight,” stimulated participants to consider 

different mechanical loads in problem definitions. 

This observation may explain why using the CNL 

did not compromise fluency. 

However, a CNL can limit the breadth of 

information considered in problem definitions. We 

observed that about 50% of the statements written in 

natural language could not be translated into the 

CNL. Most of them described the non-functional 

design features as mentioned earlier. Subsequently, 

participants of the NL-CNL condition perceived the 



  

 

syntax and lexicons as less useful because they 

could not express some of their original natural 

language statements. While we could add more 

syntax and lexicons to increase the expressiveness, 

this approach can quickly become impractical. 

Attempting to capture all types of problem 

definitions for different problems, contexts, and 

perspectives would be a significant challenge. 

We emphasize that the purpose of our CNL is not 

to capture the entire knowledge of designers during 

the design process. Instead, a CNL would be one of 

different input methods used to funnel some of the 

knowledge into formal data that can leverage the 

enormous potential benefits of computational 

design. We envision that our system would have 

capabilities to formulate multiple design spaces 

based on the input, which is an essential process of 

creative design (Gero, 1994). To enable such 

capabilities, we must take high-level problem 

definitions as the input, not solution-oriented 

information used by existing CAD systems. The 

current study demonstrated the feasibility of a CNL 

in capturing high-level problem definitions. 

6. CONCLUSIONS AND FUTURE WORK 
We demonstrated that using a CNL, compared to 

using natural language, can aid designers to produce 

problem definition statements that entail more 

useful information for formulating constrained 

optimization problems. However, using a CNL can 

limit the breadth of information considered in 

problem definitions. Hence, a CNL should be 

devised carefully so that it does not restrict much of 

the freedom and creativity that designers want in 

their design activities and solutions. 

Our future work will focus on understanding the 

natural language input and translating the input into 

formal data. We will create a formalized knowledge 

base of design lexicons, such as functions, shapes, 

materials, etc. We will also explore application of 

natural language understanding techniques, such as 

syntactic analysis and reference resolution, to handle 

more variety and natural expression of problem 

definition statements. This approach is likely more 

scalable than manually expanding the CNL. 

In terms of future user studies, we could examine 

any longitudinal effect of receiving training to use a 

CNL. We also plan to evaluate the effectiveness of 

the CNL, either in comparison to or in combination 

with, input methods other than natural language on 

expressing different types of problem definitions. 

We must validate that the overall user experience is 

in fact enhanced through the use of a CNL. 
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