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Abstract. A generalizable and example-based model for multi-scale generative
design is presented. The model adapts the Wave Function Collapse (WFC) algo-
rithm, a procedural approach popularized in game development, to a quality-
diversity (QD) framework, a state-of-the-artmulti-solution optimization approach.
QD enables the search of high-performing solutions not only against objectives,
but along a set of qualitative features -- explicitly ensuring diversity within the
solutions. We demonstrate the challenges and opportunities in applying these
novel methodologies to AEC-focused problems through a real-world residential
complex case study.
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1 Background

1.1 Quality-Diversity (QD)

In AEC, optimization is often used to understand the constraints and possibilities of a
design space and discover novel solutions by exploring a diverse set of high-performing
alternatives [1]. Themost commonmethodology is multi-objective optimization (MOO)
[2, 3]. Though MOO is often used for exploratory analysis, in many ways it is poorly
suited for it. MOO requires the definition of objectives to be minimized—design
exploration calls for features to be explored.

Quality-Diversity [4] algorithmsmove beyondMOOtoproduce sets of high perform-
ing designs organized by high-level features better suited to the judgement of domain
experts. QD searches explicitly for high performing solutions with varied qualities, such
as the perimeter of a building or the number of bedrooms in a unit. In contrast to a pareto
curve of non-dominated solutions, the most widely used QD algorithm MAP-Elites [5]
produces a grid or ‘map’ of the solutions – with each axis corresponding to a feature.
This map provides an intuitive overview of the performance potential for each region
of the feature space. Though originally designed for applications in robotics [6] and
artificial life [7], QD techniques have begun to be applied in design applications such as
engineering optimization [8, 9] and procedural content generation [10–12].
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1.2 Wave Function Collapse (WFC)

Though generative design is gaining broader adoption in the AEC industry, its impact is
limited by the level of technical skill required to operate computational design tools and
the challenge of building generalizable applications[13]. We address both issues with
a versatile design space model for semi-constrained designed systems, like modular or
prefab, compatible with traditional design methods.

Our design spacemodel adaptsWFC[14], a texture synthesis approach popular in the
game development community.WFC is a constraint-based procedural content generation
method which extracts local patterns from a sparse set of examples and transforms them
into a set of local constraints. These constraints drive generation and ensure that every
local patch of the output also exists in the set of input examples. The inner workings of
the algorithm have been extensively described [14, 15].

We extend the WFC algorithm to architectural applications (Fig. 1) where discrete
architectural tiles aremanually composed into larger assemblies and supplied to the algo-
rithmas design examples (Fig. 2). This example-based approachmakes thismethodology
compatible with traditional architectural design workflows where experienced designers
can show and teach what good designs look like and have the computer replicate virtu-
ally infinite variations of the provided examples. As discussed by Karth and Smith, the
WFC “is particularly suited to non-programmers” [15], an uncommon feature among
many advanced computational and generative design frameworks.

While in the original implementation the probability of certain patterns to appear in
the final output is determined by pixel frequencies in the design samples [14], in our
work that probability is guided through exposed normalized weights assigned to each
individual tile.

Related to texture synthesis, model synthesis is one of the earliest applications of
procedural constraint solving for 3D environments [16]. Recently, a renewed interest in
such methods has attracted designers beyond game design applications including urban
and building scale applications in conjunction with machine learning methodologies
[17–19]. Our work further extends these by allowing a search algorithm to manipulate
the probability-weights and placement of fixed tiles to control diversity of output and
optimization along a set of objectives and features. Despite the observed growing interest
in procedural constraint solving methods, viable applications for architectural design are
still unexplored.

Observed Limitations.WFC is remarkable for its simplicity but, despite some work on
extending its functionality [20] has several limitations:

• WFC does not offer control over global constraints.
• Constraints are purely spatial (adjacency).
• Lacks input controls for a search algorithm.
• Lacks domain specific constraints.
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Our approach addresses these limitations via:

• Control of formal massing via global performance metrics (e.g., natural ventilation
and noise) and global geometric features (e.g., building façade area) via integration
with a QD optimization framework.

• Dynamic weighting for tile unit selection as optimization controls.
• Dynamic pre-constraining of tiles for improved searchability.
• Fixed pre-constraining with boundary solution tiles for design-domain ease of use.

The manual nature of crafting design examples and building a catalog of units makes
this design space model highly versatile, accessible, and compatible with traditional
modeling techniques and design approaches.

Fig. 1. Collapsing process of theWFC. Refer to this video featuring this process in action: https://
vimeo.com/668784164

2 Methods and Data

2.1 Geometry System

The tiles catalog supplied to our model includes basic building components: façade,
apartment, and stair core tiles. We also use empty tiles to govern building boundaries
and open spaces (Fig. 2). This tile set is then used to manually create a defined set
of example designs that can represent the kinds of desired variations and provide the
WFC algorithm with tile-to-tile adjacency rules. Using this set of design examples in
conjunction with the WFC algorithm we automatically generate a wide variety of site
building layouts (Fig. 3).

https://vimeo.com/668784164
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To improve control over the WFC output we extend the algorithm’s basic function-
ality with tile probability weights and variable tile pre-constraints. The set of weights,
one for each tile type, can be varied to control the probability of the associated tile to
appear in the WFC output (Fig. 4 top). Variable pre-constraints – tiles which are fixed
at the start of WFC – ‘lock-in’ parts of the design while leaving the rest to the WFC
generation process. These fixed tiles are added and removed from solutions as part of
the search process (Fig. 4 bottom).

Fig. 2. WFCsteps: definition of a catalog of units (left), design of examples (middle), and example
WFC solution based on provided examples (right).

2.2 Features and Objectives

The QD algorithmMAP-Elites produces designs that are high performing along a set of
objectives and diverse along a set of features (Fig. 5). While objectives are functions to
be minimized or maximized (such as ventilation or site noise), features are quantifiable
design characteristics to be fully explored (such as perimeter length or number of build-
ings). In our case study project, we included sustainability, livability, and penalty types
of objectives and features that define geometric attributes.
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Fig. 3. Sample WFC outputs. Varied and diverse results that comply with the rules encoded by
the example designs. This represents a new way of generating industry-specific design solutions
beyond typical parametric approaches.

Fig. 4. Model parameters: (above) weights are assigned per tile type and drive the probability of
it appearing in the final output. (below) Variable pre-constraints: location, addition and removal
of pre-determined tiles are additional variables to influence collapsing process.
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Sustainability Objectives

• Indoor Ventilation. This metric defines the natural indoor ventilation potential for
each apartment. A simplified version of the air flow network (AFN) methodology is
used—the connectivity distance of each room to the apartment’s windows.

• Landscape Capacity for Carbon Sequestration. This metric measures the potential
capacity for outdoor green areas to store and avoid carbon [21]. We approximate this
capacity from a ‘clearance’ metric, the amount of clear space green areas have form
adjacent buildings. This metric values larger areas of clear space, which can support
greater levels of vegetation and trees, more highly – differentiating it from the total
area of open space.

Livability Objectives

• Site noise. This metric is defined as the percentage of tiles on the site with a noise
level of less than 50db. To accelerate optimization, we estimate this site-specific mea-
surement using a surrogate model trained on a large set of noise analysis simulations
performed on apartment complex designs designed manually by customers. Noise
sources are highways and surface roads near the actual site.

PenaltyObjectives.The penaltymetrics are introduced to help steer the optimization
towards viable and acceptable design solutions.

• Number of Apartment Units. Count of apartment units.
• Proximity of Units to Building Cores. Tile distance of each apartment unit to the
building’s cores. The distance to a core must be less than 5 tiles.

Features. This set was deliberately chosen to promote as much diversity as possible
based on the model’s geometry system. Three features are chosen as the number of
feature pairs (three pairs, versus six for four features) can be succinctly communicated.

• Façade Length. Ratio of number of façade tiles to number of units
• Number of Buildings. Count of complete buildings.
• Total Size of Open Spaces. Surface area of open spaces. Open spaces are computed
as the number of empty tiles not occupied by buildings excluding 1 tile corridors
between buildings.

2.3 Encoding and Optimization

MAP-Elites. The QD algorithm MAP-Elites [5] is used to optimize an encoding com-
posed of two parts: a vector of tile weights and a set of fixed tiles. MAP-Elites first
divides the feature space into a set of discrete bins, or map. The map houses the pop-
ulation, with each bin in the map holding a single individual. When a new solution is
evaluated, it is assigned a bin based on its features and, if that bin is empty, it is added
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Fig. 5. Features (above) and objectives (below). Greyed out region indicates area unavailable for
development.

to the map. If the bin is occupied by another solution the solution with a higher fitness
is kept in the bin and the other discarded. In this way each bin contains the best solution
ever found for that combination of features. These best solutions are known as elites.

To produce new solutions parents are chosen randomly from the elites, mutated,
evaluated, and assigned a bin based on their features. Child solutions have two ways of
joining the map: discovering an unoccupied bin, or out-competing an existing solution
for its bin. Repetition of this process produces an increasingly explored feature space and
an increasingly optimal collection of solutions. The optimization process is illustrated
in Fig. 6.

Multiple objectives are optimized using the T-Domino [22] variant of MAP-elites.
T-DominO ranks solutions according to the number of other solutions in the map that
are dominated on each objective – rewarding solutions with balanced performance over
those which excel at only a single objective. Solutions which follow constraints are
always preferred over those which do not.
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Fig. 6. Optimization of diverse solutions with Quality-Diversity.

Tile Weights. In WFC generated tiles are chosen from a set of valid tiles probabilisti-
cally – if the weighting of two valid tiles is 3:1, the first will be chosen 75% of the time
and the second 25% (Fig. 4 top). Differences in this weighting has broad effects, but
alone has limited effectiveness for optimization (Fig. 7).

Fixed Tiles. To achieve the fine-grained control necessary for optimization, solutions
are encoded with a set of fixed tiles. MAP-Elites is an evolutionary algorithm, which
produces new child solutions by altering existing parent solutions. Children inherit these
fixed tiles from parents, in addition to fixing an additional tile from the design produced
by the parent or removing one of the tiles thatwere fixed by the parent. Fixing tiles freezes
key portions of the parent design and saves progress toward interesting designs – while
still allowing substantial deviation from the parent, as the rest of the tiles are generated
stochastically with WFC (Fig. 4 bottom).

Fig. 7. Sum of objective values of best designs found in every feature region by MAP-Elites.
Fixing tiles (solid line) as part of the optimization process dramatically improves the diversity of
solutions found (Archive Size) as well as the performance of the solutions on the target objectives
vs. using only global weights (dotted line).
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Optimization Settings. At each generation 30 new individuals were created by mutat-
ing parent individuals with at 50% probability of adding a tile and a 50% probability of
removing a tile. One run consists of 5000 generations. One full run takes approximately
8h on a 32 core workstation. The feature space was divided into a 10x10x10 grid, to cre-
ate a collection of solutions, or archive, of up to 1000 solutions. Features were explored
between the ranges of [1.8–3.6], [300–500], [4–14] for the Façade Per Unit, Open Area,
and Number of Buildings respectively.

3 Findings and Discussion

Our approach generates a high performing set of apartment layouts which vary along
the provided features -- illuminating the relationship between these features and per-
formance. Viewing the performance of designs organized by these features we see that
layouts with fewer large buildings tend towards poor natural ventilation —- an effect

Fig. 8. Example visualization approaches made possible by the feature-centered Quality-
Diversity approach. Top Left: Top solutions are organized by feature combinations, with each
feature region represented as a bin colored by performance on each objective. Relationships
are visible at a glance, allowing rapid identification of promising regions. Top Right: The same
overview presented with a single objective as a Pareto Front. Bottom: Browsing designs by fea-
tures. The highlighted feature regions are explored as a walk-through feature space, allowing
designers to browse designs in an intuitively structured way.



158 L. Villaggi et al.

that can be remedied with longer, more convoluted facades. Conversely, layouts with
few large buildings and larger open areas interspersed across the site tend to have less
noise. These insights are easily identifiable with the map-based visualization approaches
(Fig. 7).

Our method of encoding and optimizing WFC-based solutions makes this type of
exploration possible. Optimization of tile weights guides the direction of WFC and
iteratively fixing tiles provides further control -- resulting in improvements in the quality
of solutions produced while accelerating optimization by an order of magnitude. The
fixed tile approach adds an intuitive method of steering optimization. Fixed tiles can
be manually or parametrically placed to guide design outcomes around constraints like
stair locations, courtyards, or existing structures (Fig. 8).

Fig. 9. An example of 3D featuremapping for intuitive navigation of design spaces. Herewe show
how additional attributes can be extracted (such as number of open spaces and area of individual
open spaces) to further aid the design space navigation.
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High-level features are valuable to designers for decision-making, but difficult to
integrate into multi-objective frameworks -- QD allows the design space to be viewed
through the lens of these features (Fig. 9). WFC allows design intent to be communi-
cated through concrete, visual examples as well as promoting a multi-scalar approach
to design where internal layouts, building footprint and site organization happen all
simultaneously. Both advances flow from the same principle: for generative design to
be useful, it must be intuitive.
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