
Generative Design through Quality-Diversity Data Synthesis and
Language Models

Adam Gaier
Autodesk Research
Bonn, Germany

adam.gaier@autodesk.com

James Stoddart
Autodesk Research

Atlanta, USA
james.stoddart@autodesk.com

Lorenzo Villaggi
Autodesk Research
New York, USA

lorenzo.villaggi@autodesk.com

Shyam Sudhakaran
Autodesk Research
San Francisco, USA

shyam.sudhakaran@autodesk.com

ABSTRACT
Two fundamental challenges face generative models in engineering
applications: the acquisition of high-performing, diverse datasets,
and the adherence to precise constraints in generated designs. We
propose a novel approach combining optimization, constraint satis-
faction, and language models to tackle these challenges in architec-
tural design. Our method uses Quality-Diversity (QD) to generate
a diverse, high-performing dataset. We then fine-tune a language
model with this dataset to generate high-level designs. These de-
signs are then refined into detailed, constraint-compliant layouts
using the Wave Function Collapse algorithm. Our system demon-
strates reliable adherence to textual guidance, enabling the genera-
tion of layouts with targeted architectural and performance features.
Crucially, our results indicate that data synthesized through the
evolutionary search of QD not only improves overall model perfor-
mance but is essential for the model’s ability to closely adhere to tex-
tual guidance. This improvement underscores the pivotal role evolu-
tionary computation can play in creating the datasets key to training
generative models for design. Web article at https://tilegpt.github.io

KEYWORDS
Quality-Diversity; MAP-Elites; Language Model

ACM Reference Format:
AdamGaier, James Stoddart, Lorenzo Villaggi, and Shyam Sudhakaran. 2024.
Generative Design through Quality-Diversity Data Synthesis and Language
Models. In Genetic and Evolutionary Computation Conference (GECCO ’24),
July 14–18, 2024, Melbourne, VIC, Australia. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3638529.3654138

1 INTRODUCTION
Generative Design (GD) in architecture represents a paradigm shift
in the way designs are conceptualized and realized. It draws inspira-
tion from natural evolution to explore vast design spaces to discover
high-performing, innovative solutions [34]. At its core, GD involves

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0494-9/24/07.
https://doi.org/10.1145/3638529.3654138

a geometry generator that delineates a broad solution space, cou-
pled with simulations and analytical methods for evaluating each
design against a set of metrics. Metaheuristic search algorithms,
such as genetic algorithms, navigate this space to identify optimal
solutions [32]. This approach is versatile and scale-agnostic, making
it applicable to a wide range of design problems and scales.

In Architecture, Engineering, and Construction (AEC), GD is
most commonly used in the early stages of design [3]. This is when
the potential to influence outcomes is highest, and the cost im-
plications of design changes are minimal [36, 40]. GD has been
successfully applied in numerous AEC projects, enabling practi-
tioners to tackle complex challenges, balance conflicting objectives,
and make informed decisions based on solid evidence [32, 33, 46].

But the development and deployment of GD methods requires
a high level of technical expertise, which limits their scalability
and accessibility. Not only that, the results of GD are large sets
of complex solutions, requiring designers to spend as much effort
on analysis as on creation. Worse still, typical GD workflows offer
limited scope for interaction – making changes often necessitates
rerunning the entire optimization process.

Large language models (LLMs), which have streamlined many
tasks, could also be applied to design. LLMs fine-tuned on labeled
segments of existing Mario Bros. levels are able to generate lev-
els which reflect descriptive prompts (e.g., "few enemies," "many
pipes") [42, 43]. Many tasks in architectural design, particularly in
the conceptual phase, can be modeled at a similar level of abstrac-
tion as video game levels. Experimentation has already begun in
AEC to take advantage of the same tile-based layouts and proce-
dural content generation (PCG) techniques used in games. [24, 47].

Crucially, to adapt an LLM-based approach to design in this
way it is necessary to have a large corpus of labeled data. Quality-
Diversity (QD) [6, 37] approaches are able to generate large col-
lection of solutions, ideal for use as training data. These high per-
forming collections of span user-defined features, allowing users to
define the design features to explore, and then generate a bespoke
dataset that spans those features.

Designs generated by language model are created only through
the learned statistical relationships, but in design it is necessary that
constraints are followed. Rather than forcing the LLM to learn every
constraint, we instead task it with creating a conceptual plan which
is then handed to theWave Function Collapse (WFC) algorithm [19],
a PCG approach based on constraint satisfaction [23].

https://tilegpt.github.io
https://doi.org/10.1145/3638529.3654138
https://doi.org/10.1145/3638529.3654138

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia Adam Gaier, James Stoddart, Lorenzo Villaggi, and Shyam Sudhakaran

Constrained Refinement
to Higher Level of Detail

Number of Units
Carbon Sequestration

Synthesize Dataset of Designs
and Attributes with MAP-Elites1 2 3 4

ATTRIBUTES

Condition on Attributes
via Cross Attention

Convert Designs
to Strings of TokensDESIGNS

DATA SYNTHESIS AND TRAINING GENERATE AND CONSTRAIN

Fine-Tune GPT Model
on Synthetic Dataset

Generate Simplified
Design from Text Prompt

GPT

Tile-GPT

“a site with
many units and

high sequestration”

Constrain Raw Token
Encoding to Design

Export to
BIM Software

Tile-GPT

Figure 1: Algorithm flow of the proposed generative design approach, TileGPT. (1) A dataset of paired designs and attributes is
generated with the MAP-Elites algorithm, which is used to (2) fine-tune a GPT model to produce designs with given attributes.
(3) Given a natural language description a simplified design with the described attributes is generated by the GPT model, and
(4) given to a constraint satisfaction algorithm, which refines it into a detailed site plan.

The language model interprets the designers intent through nat-
ural language prompts, and generates designs at a high level, such
as the placement of buildings and green spaces. These designs are
then processed by WFC to generate the detailed layout of modules.
This method ensures that the final design not only resonates with
the input provided by the designer but also rigorously complies
with the constraints of construction.

The outlined system, dubbed TileGPT, demonstrates:

• The integration of QD with PCG techniques to synthesize
tailored labeled datasets of high performing solutions.

• The use of a fine-tuned LLM to interpret and implement
design directives in natural language and apply them to a
real-world generative design case.

• The application of constraint satisfaction to guarantee the
validity of designs generated by an LLM.

This novel approach integrates QD, LLMs, and constraint satis-
faction within the GD framework. This integration aims to enhance
the accessibility of GD methods, reduce the technical barriers to
their use, and provide more intuitive, interactive design manipula-
tion capabilities through natural language inputs.

2 BACKGROUND
2.1 Wave Function Collapse
Wave Function Collapse (WFC) is a procedural content generation
technique, popularized by Maxim Guman [19] for creating 2D and
3D content, in the form of a constraint satisfaction algorithm. It is
similar to the Example-Based Model Synthesis [30] method and is
adept at generating non-tiling, self-similar structured data based
on sparse input examples.

The algorithmworks through iterations of a single cell collapse —
assignment to a single fixed state — and neighborhood propagation
— where surrounding tiles are constrained to compatible patterns

with the collapsed cell. Cells are collapsed in order of minimum
entropy, measured as the certainty of a specific outcome from the
weightings of potential states, precisely defined as:

Shannon Entropy = log
(∑︁

𝑤𝑖

)
−
∑(𝑤𝑖 × log(𝑤𝑖))∑

𝑤𝑖
(1)

where 𝑤𝑖 represents the weight of each potential state for a cell.
The weight reflects the likelihood or frequency of a particular state
occurring based on the adjacency constraints and the neighbors.

The WFC methodology consists of a four-step process:

(1) Pattern extraction: Utilizing one or more self-similar input
examples, WFC identifies cell adjacencies, which are used to
form a domain of possible constrained states.

(2) Initialization and pre-constraint: The output is initializedwith
each cell represented as an array of potential states. Individ-
ual cells can be pre-constrained to a subset of these states.
This is commonly used to enforce boundary conditions or
enable controlled generation from an initial pattern.

(3) Cell collapse: The output cell with the lowest entropy value is
selected for collapse. From the selected cell’s possible states,
a single, final state is chosen using a weighted random se-
lection and all other potential states discarded. In the event
more than one cell has the same lowest entropy value, the
cell to collapse is chosen randomly from the candidates.

(4) Propagation: After a cell is collapsed, the solver iterates
through the adjacent cells and removes all pattern states
incompatible with collapsed cell.

The solver repeats steps 3 and 4 until the output is fully collapsed,
with each cell assigned to a single state, or until a contradiction
arises, indicating that the solver cannot satisfy all constraints.

Generative Design throughQuality-Diversity Data Synthesis and Language Models GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

2.2 Quality-Diversity
Quality-Diversity (QD) approaches, like MAP-Elites [5, 31], search
for high-performing solutions which cover a range of user-defined
features. Generating diversity along features rather than only ob-
jectives makes QD well suited to the needs of GD, as designers
are often interested in other attributes beyond objectives [3]. QD
has been applied in various design domains including aerodynam-
ics [9, 20, 21], game design [1, 16, 17] and architecture [13, 14, 47].

QD produces a collection of solutions in a single run. The abil-
ity to produce numerous high-quality and varied solutions posi-
tions QD as an ideal tool for synthesizing datasets for machine
learning. Collections of solutions generated through QD have been
effectively used in creating surrogate models that predict perfor-
mance [10, 25, 50], building generative models to aid optimiza-
tion [12, 38] and exploration [11, 18, 35], creating conditioned rein-
forcement learning policies [8], and fine-tuning language models to
produce virtual creature body plans [27]. In this work, we leverage
the designs produced by MAP-Elites to fine-tune and condition a
language model to produce designs based on text prompts.

2.3 Language Models
Large Language models (LLMs) are powerful and versatile, able
to learn from massive datasets for sequence modelling tasks such
as generating text [4], code [15, 29], and multimodal outputs such
as images and robot states [7]. These models leverage attention
mechanisms [45] to capture patterns in long term sequences. Pre-
trained LLMs can be fine-tuned for diverse downstream sequence
modelling tasks, reusing the models parameters as a starting point
and adding an additional layer trained from scratch. These tasks
are not limited to text, but can be generalized to other sequences,
such as tile based layouts. Several works have explored this in the
context of video games, including MarioGPT, a fine tuned LLM for
Mario level generation [42, 43]. The authors showed that MarioGPT
was able to generate coherent and playable levels whose layout
could be guided by text – an approach we build upon in this work.

3 METHOD
The TileGPT system, described in detail below, proceeds as follows:

(1) Dataset Generation
(a) A dataset is generated by using MAP-Elites to search the

space of designs that can be generated by WFC.
(b) Each design in the dataset is paired with a text label such

as ’many units’ or ’little carbon sequestration’ based on
the features of the design.

(2) Model Training
(a) A GPT model is fine-tuned using this dataset of designs,

adapting it to produce layouts one tile at a time.
(b) Attribute labels are converted into numerical vectors via a

text encoder and incorporated into the fine-tuning process
through a cross attention layer.

(3) Layout Generation
(a) TheGPTmodel is providedwith a natural language prompt

corresponding to the desired attributes and generates a
design at a low level of detail.

(b) These rough layouts are refined by the WFC algorithm,
ensuring local constraint satisfaction and validity.

Figure 2: Mutation of a WFC genome. Fixed tiles are encoded
into the genome, and set at the start of a WFC rollout, influ-
encing the development of the final design.

3.1 Dataset Generation
Synthesizing Data with MAP-Elites. WFC stands out for its ability
to generate a wide array of unique designs from minimal initial
examples, a potential we leverage for the generation of synthetic
datasets. By conducting numerous iterations or ‘rollouts’ of the
WFC algorithm, a large volume of data can easily synthesized.

Despite its versatility, WFC-generated designs are not ideal sam-
ples, particularly when performance of the designs is a priority.
In a domain like site design, common issues with WFC include
inefficient utilization of space, which could be better employed for
buildings or landscaping. Furthermore, there’s a tendency for the
attributes of the designs to converge towards average values, lead-
ing to a dataset that lacks extremes and, as a result, limits the scope
of what models can generate. The sparsity of varied and compelling
examples in the dataset restricts the model’s ability to produce
innovative designs or to respond appropriately to text prompts.

To overcome challenges related to the quality and uniformity
in design generation, we use MAP-Elites for data synthesis. By
adopting a diversity-based optimization strategy, we actively seek
out high-quality solutions that encompass a broad spectrum of
features. This method moves beyond simply sampling, ensuring
the creation of a dataset that is both diverse and of high quality.
The enriched dataset thus obtained is pivotal in training our model,
enabling it to produce designs that are not only varied but also
superior in quality. This refined approach significantly boosts the
model’s capability to generate diverse site layouts, enhancing the
overall effectiveness of the design process.

Optimization of Designs with WFC. To use WFC in the optimization
process, we must devise a way of effectively searching the space
of WFC produced designs. The core strength of WFC is that it
is capable of producing a large variety of solutions that follow a
consistent style and set of constraints. This constrained expressivity
makes it an appealing option for optimization, but searching the
space of solutions through WFC is challenging. The variety in WFC
comes from the chaotic elements of its generation process – small
changes in the initial conditions or early choices have dramatic
consequences for the final result.

The a common lever to guide WFC is to adjust the probability
of each tile being chosen when a cell is ‘collapsed’. Macro level
differences are possible to induce in this way, but it is impossible

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia Adam Gaier, James Stoddart, Lorenzo Villaggi, and Shyam Sudhakaran

to replicate or preserve distinct tile patterns. Adjusting tile weights
alone does not produce a suitable encoding for optimization. An
encoding based on a tile weight genotype and fully collapsed tile
phenotype is highly non-local [39] – a small change in the genotype
produces a large and unexpected change in the phenotype, dooming
any search algorithm to be little better than random.

We can consider the mapping of genotype to phenotype through
the intermediary of WFC as a probabilistic encoding, where each
genomemaps to a distribution of phenotypes. To create an encoding
which is more local, and so more amenable to search, we must
narrow this distribution while also making it heritable.

At the start of the WFC algorithm we can fix a set of tiles, pre-
serving a few existing parts of the parent design and allow the
algorithm to generate the remainder. These fixed tiles can be in-
cluded as part of the genome and passed on to child solutions. A
genome composed of fixed tiles and tile weights is a more local
encoding – children resemble parents, and small changes in geno-
type typically produce small changes in phenotype. The more tiles
which are fixed the narrow the distribution of possible mappings
from genotype to phenotype.

We can further instantiate individuals by including a random
seed, ensuring that a given genome always produces the same phe-
notype. The resulting genotype is represented as a tuple comprising
tile weights, fixed tiles, and a seed. It takes the form:

Genotype = (𝑇weight,𝑇fixed, Seed)
Where, 𝑇weight is a vector of tile weights, 𝑇fixed is a list of tuples

with each tuple representing a tile type and its position in the grid.
To search this space, we apply a mutation operator, which in-

volves the following steps:
(1) The 𝑇weight vector is modified by the addition of Gaussian

noise, adjusting the weights either upward or downward.
(2) Tiles are added or removed from the 𝑇fixed list.
(3) Seed is reset to a new random integer.
At each generation an equal number of individuals are chosen

to have tiles removed and added. Tiles are chosen to be added or
removed randomly, and the number added or removed drawn from
a uniform distribution between 1 and 4 tiles.

Fixed tiles are added from the phenotype of the parent solution.
Adding tiles in this way not only allows children to inherit the
same structures, it ensures that the constellation of fixed tiles is a
valid one – we know there must be at least one valid phenotype
to be found by WFC with that set of tiles. The process of fixed tile
mutation is illustrated in Figure 2.

The iterative adding and removing of tiles allows a search algo-
rithm to purposefully search through the space of designs generated
by WFC – designs which are guaranteed to follow the guidelines
and requirements of the designer.

Dataset Preprocessing. The number of potential tiles, considering
their rotations and reflections, can easily reach into the hundreds
– and each tile comes with its own unique set of adjacency rules1.
Training a GPT model to predict tokens at this level of granularity
distracts from its central objective: facilitating global-level opti-
mization and exploration.

1see Appendix C for the full set of 216 tiles in our application

Figure 3: Possible WFC cell states and their simplifications
for tokenization. Designs are evaluated using the WFC cell
states, but generated using the reduced set of LLM cell states.

Our approach positions the GPT model as a strategic director
in the design process. Its role is not to micromanage the minu-
tiae of tile adjacencies but to guide overarching design decisions.
This perspective aligns the model’s strengths with the demands of
high-level conceptual design, and steers clear of the intricacies of
individual tile relationships. To streamline this process, we catego-
rize the full tile set into a smaller set of distinct functional groups,
as illustrated in Figure 3. This categorization substantially reduces
the complexity the GPT model has to manage.

Designs are represented as a grid of tiles, but to convert these
designs into tokens we transform each into one of these functional
categories. Subsequently, each category is represented by a unique
character (e.g., ’A’, ’B’, ’C’). We then flatten this grid of characters
into a vector format to fit the standard sequence completion training
paradigm of GPT models. Each site’s features – defined by their
coordinates in theMAP-Elites grid – are paired with their respective
design. These are then translated into high-level natural language
descriptions during training (e.g., "few/some/many parks").

3.2 Language Model Training
A causal language model is finetuned to learns "next tile predic-
tion", analogous to the "next token prediction" objective which most
causal language models are optimized for – the model learns to gen-
erate a design by predicting a single tile based on a sequence of previ-
ous tiles. Previous work has shown that by finetuning LLMs for tile
generation they can generate new playable levels in Sokoban[44]
and Mario Bros[42]. Similar to [42], we choose a distilled version of
GPT2 (DistilGPT2) [41] as our base LLM to finetune, with additional
cross attention weights used for prompt conditioning. To incorpo-
rate these prompts, we utilize a frozen text encoder (BART) [28] to
embed the prompts as a vector of floats. These vectors are averaged
and used in the cross attention weights in combination with the
encoded tile sequence. All previous tiles are used as context for
predicting the next tile. The architecture is illustrated in Figure 5.

Generative Design throughQuality-Diversity Data Synthesis and Language Models GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

Figure 4: Layout Generation in TileGPT. (1) A site description is provided to the model, which (2) produces a high level layout.
(3) This layout is converted into preconstraints for the WFC algorithm, which (4) generates detailed geometry. The 2D geometry
can be then be extruded (5) into a form suitable for use with commercial design software.

Figure 5: TileGPT architecture. Text prompts are encoded
through a frozen text encoder and are combined with previ-
ous tiles in GPT2’s cross attention mechanism.

Because we use DistilGPT2, the model in TileGPT is relatively
small and utilizes only 96 million trainable parameters. This al-
lows for training efficiently on a single GPU. We train TileGPT
for 500,000 steps, sampling 16 random designs uniformly at each
training iteration and optimize weights using Adam optimizer [26].

3.3 Layout Generation
To use the model for design generation, we follow the a series of
steps, as depicted in Figure 4. In this integrated process, the GPT
model lays the foundation for the overarching design based on nat-
ural language prompts, while WFC ensures its practical feasibility
and completeness.

Step 1: Design Initiation via Prompt. The process begins with the
input of a design prompt. This prompt incorporates the natural
language parameters our model has been trained on. The system

inserts randomly sampled prompts for those not provided. These
prompts are converted to a vector and used as a constant input to the
cross-attention layer – laying the groundwork for the subsequent
design generation.

Step 2: LLM-Driven Site Design Formation. Following the initial
prompt, the GPT model, steered by the textual input, engages in
an iterative process of selecting tiles from a simplified set of cate-
gories. These selections form a high-level blueprint, outlining the
fundamental structure of the design.

Step 3: Translation to Permissible Tile Sets. The basic tile types
delineated by the GPT model are then transformed into a set of al-
lowable tiles. For instance, a ‘building core’ might be represented in
every possible orientation. This step refines the blueprint, preparing
it for more detailed procedural generation.

Step 4: Detailed Design Completion through WFC. The refined
blueprint is subsequently transferred to theWFC. WFC selects from
a comprehensive tile-set to add intricate details, from orientations
to placement of windows and interior walls.

Step 5: Finalizing a Valid Design. Upon completion of WFC, we
obtain a single, valid design. This design is not only complete in
its structure but also readily transferable to Building Information
Modeling (BIM) software for detailed editing and analysis.

Importantly, this procedure is not rigid. Users have the flexi-
bility to modify the design iteratively. For example, a portion of
the site can be erased and re-generated by inputting an alternative
text prompt, directing the system to refill the area with a design
that incorporates specific desired features. This iterative capabil-
ity enhances the adaptability and user-interactivity of our design
generation process.

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia Adam Gaier, James Stoddart, Lorenzo Villaggi, and Shyam Sudhakaran

Value: 5

Value: 4

Value: 4

Value: 7

Value: 5

Value: 52

Value: 72

Value: 61

Value: 25

Value: 33

Value: 28

Value: 35

Value: 33

Value: 29

Value: 38

Value: 51450

Value: 33225

Value: 33525

Value: 25350

Value: 21600

Value: 0.470

Value: 0.384

Value: 0.326

Value: 0.618

Value: 0.083

Number of Parks
Feature

Reference
Designs

Total Units
Feature

Privacy
Feature

Largest Park Size
Feature

Sequestered Carbon
Feature

4 80Num of Cells 4 20Num of Units Low HighStorage Capacity Exposed PrivateExposure

Figure 6: Features explored with MAP-Elites. Layouts which span these features are generated to form a dataset for training.

4 EXPERIMENTS
4.1 Setup
We test our system in a real-world design scenario: the design of
apartment complex layouts for prefabricated housing. As part of
an applied research collaboration with the modular construction
company FactoryOS2, we derived ourmodules from their real-world
catalog of prefabricated apartment units and worked together to
test the WFC algorithm for early stage design.

Adjacency rules for our WFC algorithm are derived from a small
set of manually created reference designs (see Appendix B). Each
generated site layout consists of a 25x15 grid, totaling 375 tiles.
These tiles represent various elements: livable building component
modules, utility elements like corridors and cores, more or less
intensive landscaping such as trees or lawn, and unused spaces and
streets. Site borders are fixed, surrounded by street or landscaping.

Sites are evaluated on five metrics: number of parks, largest park
size, total units, sequestered carbon, and privacy, each illustrated
in Figure 6. A site’s performance is gauged by the proportion of
non-empty tiles. Each site is labeled with a text prompt that mirrors
these features, divided into low, medium, and high values, for a
total of 243 (35) possible text labels. For clarity we will refer to
these metrics as ‘features’ and an instance of these features as an
attribute (high privacy vs. low privacy).
2https://factoryos.com/

4.2 Results
Experiment Objectives and Methodology. Experiments are designed
to evaluate our system, a language model fine-tuned on a synthetic
dataset, in generating designs that are then refined to meet specific
constraints and criteria. We focus on two key aspects:

(1) Validity: Does our system reliably produce valid designs
that can be transformed into complete layouts by WFC?

(2) Fidelity:Howwell do designs align with the given prompts?
Where a layout is ‘complete’ if it is filled with a set of tiles that

obey all adjacency constraints, and a design is considered to ‘align’
with the prompt if the attribute value is in the ranges defined during
training for each text prompt (see Figure 7 for demarcations). We
evaluate our model with the following exhaustive approach:

• We prompt the model to produce 100 designs for every com-
bination of prompts, amounting to 243 prompts.

• Validity is measured by the WFC solver’s ability to generate
a complete layout from each design.

• Fidelity is measured for each valid layout, with achieving
fidelity when the attributes match those specified in the
prompt, each attribute evaluated separately.

We investigate the impact of employing a QD approach in the gen-
eration of the synthetic dataset. Two datasets are used to produce
models, one generated with MAP-Elites and the other by sampling
WFC, each with a dataset contains a total of 50,000 designs each.

https://factoryos.com/

Generative Design throughQuality-Diversity Data Synthesis and Language Models GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

1 2 3 4 5
0

5000

10000

15000

Co
un

ts

LOW MID HIGH

Number of Parks

MAP-Elites (Gini: 0.15) Sampling (Gini: 0.15)

20 23 26 29 32 35 38 41 44 47 50
0

2000

4000

6000

8000
LOW MID HIGH

Total Units

MAP-Elites (Gini: 0.25) Sampling (Gini: 0.37)

0.2 0.2
5 0.3 0.3

5 0.4 0.4
5 0.5 0.5

5 0.6 0.6
5 0.7

0

2000

4000

6000

8000

10000
LOW MID HIGH

Privacy

MAP-Elites (Gini: 0.12) Sampling (Gini: 0.41)

8 12 16 20 25 29 33 37 41 45 50
0

5000

10000

15000

20000

25000

Co
un

ts

LOW MID HIGH

Sequestered Carbon

MAP-Elites (Gini: 0.28) Sampling (Gini: 0.71)

0 15 30 45 60 75 90 105 120 135 150
0

5000

10000

15000

20000

25000
LOW MID HIGH

Evenly distributed
is better

Largest Park Size

MAP-Elites (Gini: 0.20) Sampling (Gini: 0.65)

0.4 0.4
5 0.5 0.5

5 0.6 0.6
5 0.7 0.7

5 0.8 0.8
5 0.9

0

5000

10000

15000
Higher is better

Used Land (Fitness)

MAP-Elites Sampling

Figure 7: Distribution of feature and performance values of in datasets of designs generated with MAP-Elites and Sampling. Gini
coefficient of number of samples in each bin is provided to aid interpretation of distributions. Demarcation of the qualitative
labels used to train the model (e.g. low, mid, high number of units) show in green.

Comparative Analysis of Datasets. It is informative to first exam-
ine the differences in the datasets generated by sampling and by
MAP-Elites. Analyzing the composition of these datasets provides
a clearer understanding of the differences in the resulting models.

A key aspect of producing expressive models is ensuring a di-
verse range of features in the dataset. Ideally, this would manifest as
a uniform distribution across all features. While a completely filled
MAP-Elites archive would produce this ideal scenario, in practice
there are inherent trade-offs in features, and not every combination
can be produced, so creating some imbalance in unavoidable.

The distribution of feature values in the designs of each dataset
is shown in Figure 7. To underline the difference in uniformity, we
also calculate the Gini coefficient3, a measure of inequality, of the
number of samples in each bin.

This analysis reveals that MAP-Elites produces a far more uni-
formly distributed dataset compared with sampling. More than half
of all samples generated by sampling WFC are in the lower tenth of
sequestered carbon and large parks – randomly generated designs
rarely yield large parks, which are crucial for substantial carbon
sequestration. Random sampling simply cannot reliably cover the
extremes of some feature distributions.

In addition we examine the distribution of performance values
(Figure 7, bottom right). The datasets generated by sampling alone
tend to follow a normal distribution around a low mean. In contrast,
MAP-Elites actively seeks out high-performing designs. This dis-
tinction underscores the effectiveness of targeted search methods
like MAP-Elites in creating datasets that not only span a broad
feature range but also include high-performance design options,
which are less likely to emerge through random generation.
3A Gini coefficient of 0 indicates perfect uniformity, while 1 indicates all samples
concentrated in a single bin

Model Performance. The performance of each model, including
the differences between them, is shown in Figure 8. The model
trained with MAP-Elites synthesized dataset demonstrates a higher
level of fidelity to the design prompts across nearly all categories.
Though the category of ’total units’ shows comparatively weaker
performance, this can be attributed to the model’s limited control
over this aspect; while it can outline the building design, the actual
generation of walls—and consequently the number of units—is
determined by the WFC solver and randomness of the seed.

The model trained on the dataset generated by WFC exhibits
uneven performance, mirroring the inconsistencies in its training
dataset. The model struggles to generate designs with high carbon
sequestration, large parks, or low privacy solutions, all of which
are underrepresented in the sampled dataset. For attributes with
abundant data, such as low carbon sequestration or number of
parks, the model performs well. That the sampled dataset is lower-
performing, with a lot of empty tiles, translates into fewer and
smaller parks, and fewer units. This alone may be enough to bias
the generation toward these attributes, regardless of the prompt.

The validity of designs generated by the WFC-trained model is
lower across all categories, particularly in the ’high’ level categories
where the fidelity is also lacking. This trend can be attributed to
the model’s limited exposure to the cross-attention signal of rarer
prompts in the WFC dataset, leading to challenges in handling less
predictable inputs and consequently producing invalid designs.

The results underscore that the caliber and variety of the training
data are key to successful model training. In particular this empha-
sizes the superiority of QD methods in creating rich and varied
datasets, proving their effectiveness for sophisticated, real-world
design problems where random sampling is not sufficient.

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia Adam Gaier, James Stoddart, Lorenzo Villaggi, and Shyam Sudhakaran

Figure 8: Model performance when trained on a MAP-Elites
synthesized dataset vs. one obtained by sampling. Each cell
represents the mean of a single prompt (e.g. "High number
of parks") in combination with every other prompt (varied
levels of units, privacy, carbon, park size).Validity: how often
a design with this prompted feature generates a valid design.
Fidelity: how many valid solutions follow the prompt.

5 DISCUSSION
This work introduces a novel approach to generative design, ad-
dressing the challenges of data availability, ease of use, and con-
straint compliance. Our method combines optimization techniques,
constraint satisfaction mechanisms, and the generative capabilities
of language models to remedy stubborn difficulties intrinsic to GD.

Building on existing generative design methods, our approach
transforms their main weakness—the overwhelming volume of
results—into a key advantage. Instead of requiring users to sift
through thousands of generative design outcomes, these results
become raw material to train a model to help them explore the
possibilities of design. This integration allows users direct access
to the exploratory benefits of evolutionary AI and the precision
of constraint-satisfying symbolic AI, all through the user-friendly
interface of a generative AI language model.

Our current system was built on simple tile representations, and
while many layout problems in architecture can be encoded in
this way, it is an obvious limitation to the technique’s versatility.
Alternative tokenization schemes would enable the generation of
different geometries, andmany such approaches are already gaining
traction for manufacturing design [22, 48, 49]

The conditioning of the model on features is currently based on
linear ranges of user-defined features; however, future implementa-
tions could utilize non-linear regions or integrate more descriptive
natural language labels for more intuitive exploration. Approaches

like Quality-Diversity with AI Feedback [2], especially combined
with multimodal models which could automatically label site plans
with more qualitative attributes, could further enhance the system’s
capability for generating intuitive and meaningful design features.

Although not explicitly evaluated in this paper, the system is
designed to be interactive. Users can modify specific areas of a site
layout according to their prompts, enabling high-level exploration
and alteration of site plans Such prompt-guided changes can act as
high-level mutation operators, as shown in MarioGPT [42], offering
a novel avenue for interactive and dynamic design modification.

Beyond the specifics of the presented system, this work repre-
sents a broader approach for applying generative models in en-
gineering and architecture. This approach rests on three pillars:
diversity-based optimization for generating high-quality datasets,
the use of large models for generation and interaction, and con-
straint satisfaction algorithms that take the final step in generation
to ensuring the valid designs. By weaving a generative model into
the fabric of the design process, we mitigate the need for extensive
post-hoc analysis typically associated with generative design. In-
stead, we pave a path for purposeful exploration, allowing for both
controlled directives and serendipitous design outcomes.

REFERENCES
[1] Alberto Alvarez, Steve Dahlskog, Jose Font, and Julian Togelius. 2019. Empower-

ing quality diversity in dungeon design with interactive constrained map-elites.
In 2019 IEEE Conference on Games (CoG). IEEE, 1–8.

[2] Herbie Bradley, Andrew Dai, Hannah Teufel, Jenny Zhang, Koen Oostermeijer,
Marco Bellagente, Jeff Clune, Kenneth Stanley, Grégory Schott, and Joel Lehman.
2023. Quality-Diversity through AI Feedback. arXiv preprint arXiv:2310.13032
(2023).

[3] Erin Bradner, Francesco Iorio, Mark Davis, et al. 2014. Parameters tell the design
story: ideation and abstraction in design optimization. In Proceedings of the
symposium on simulation for architecture & urban design, Vol. 26. Citeseer, 1–8.

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[5] Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. 2015.
Robots that can adapt like animals. Nature 521, 7553 (2015), 503–507.

[6] Antoine Cully and Yiannis Demiris. 2017. Quality and diversity optimization: A
unifying modular framework. IEEE Transactions on Evolutionary Computation 22,
2 (2017), 245–259.

[7] Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdh-
ery, Brian Ichter, Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu,
et al. 2023. Palm-e: An embodied multimodal language model. arXiv preprint
arXiv:2303.03378 (2023).

[8] Maxence Faldor, Félix Chalumeau, Manon Flageat, and Antoine Cully. 2023. MAP-
Elites with Descriptor-Conditioned Gradients and Archive Distillation into a
Single Policy. arXiv preprint arXiv:2303.03832 (2023).

[9] Adam Gaier, Alexander Asteroth, and Jean-Baptiste Mouret. 2017. Aerodynamic
design exploration through surrogate-assisted illumination. In 18th AIAA/ISSMO
multidisciplinary analysis and optimization conference. 3330.

[10] Adam Gaier, Alexander Asteroth, and Jean-Baptiste Mouret. 2018. Data-efficient
design exploration through surrogate-assisted illumination. Evolutionary compu-
tation 26, 3 (2018), 381–410.

[11] Adam Gaier, Alexander Asteroth, and Jean-Baptiste Mouret. 2019. Are quality
diversity algorithms better at generating stepping stones than objective-based
search?. In Proceedings of the Genetic and Evolutionary Computation Conference
Companion. 115–116.

[12] Adam Gaier, Alexander Asteroth, and Jean-Baptiste Mouret. 2020. Discovering
representations for black-box optimization. In Proceedings of the 2020 Genetic and
Evolutionary Computation Conference. 103–111.

[13] Adam Gaier, James Stoddart, Lorenzo Villaggi, and Peter J Bentley. 2022. T-
DominO: Exploring Multiple Criteria with Quality-Diversity and the Tournament
Dominance Objective. In International Conference on Parallel Problem Solving
from Nature. Springer, 263–277.

[14] Theodoros Galanos, Antonios Liapis, Georgios N Yannakakis, and Reinhard
Koenig. 2021. ARCH-Elites: Quality-diversity for urban design. In Proceedings of
the Genetic and Evolutionary Computation Conference Companion. 313–314.

Generative Design throughQuality-Diversity Data Synthesis and Language Models GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

[15] GitHub. 2021. GitHub Copilot: Your AI pair programmer. https://github.com/
features/copilot. Accessed: 2024-01-30.

[16] Miguel González-Duque, Rasmus Berg Palm, David Ha, and Sebastian Risi. 2020.
Finding game levels with the right difficulty in a few trials through intelligent
trial-and-error. In 2020 IEEE Conference on Games (CoG). IEEE, 503–510.

[17] Daniele Gravina, Ahmed Khalifa, Antonios Liapis, Julian Togelius, and Georgios N
Yannakakis. 2019. Procedural content generation through quality diversity. In
2019 IEEE Conference on Games (CoG). IEEE, 1–8.

[18] Luca Grillotti and Antoine Cully. 2022. Unsupervised Behavior Discovery With
Quality-Diversity Optimization. IEEE Transactions on Evolutionary Computation
26, 6 (2022), 1539–1552.

[19] M. Gumin. 2016. Wave Function Collapse. https://github.com/mxgmn/
WaveFunctionCollapse. Accessed: March 25, 2023.

[20] Alexander Hagg, Alexander Asteroth, and Thomas Bäck. 2018. Prototype dis-
covery using quality-diversity. In International Conference on Parallel Problem
Solving from Nature. Springer, 500–511.

[21] Alexander Hagg, Dominik Wilde, Alexander Asteroth, and Thomas Bäck. 2020.
Designing air flow with surrogate-assisted phenotypic niching. In International
Conference on Parallel Problem Solving from Nature. Springer, 140–153.

[22] Pradeep Kumar Jayaraman, Joseph George Lambourne, Nishkrit Desai, Karl
Willis, Aditya Sanghi, and Nigel JW Morris. 2022. SolidGen: An Autoregressive
Model for Direct B-rep Synthesis. Transactions on Machine Learning Research
(2022).

[23] Isaac Karth and AdamM Smith. 2017. WaveFunctionCollapse is constraint solving
in the wild. In Proceedings of the 12th International Conference on the Foundations
of Digital Games. 1–10.

[24] N. Kaylor, L. Villaggi, and D. Zhao. 2023. From Prototype to Platform: Delivering
New Design Capabilities on Autodesk Forma. In Autodesk University. Las Vegas.

[25] Paul Kent, Adam Gaier, Jean-Baptiste Mouret, and Juergen Branke. 2023. BOP-
Elites, a Bayesian Optimisation Approach to Quality Diversity Search with Black-
Box descriptor functions. arXiv preprint arXiv:2307.09326 (2023).

[26] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Opti-
mization. arXiv:1412.6980 [cs.LG]

[27] Joel Lehman, Jonathan Gordon, Shawn Jain, Kamal Ndousse, Cathy Yeh, and
Kenneth O Stanley. 2023. Evolution through large models. In Handbook of
Evolutionary Machine Learning. Springer, 331–366.

[28] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019. BART: De-
noising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. arXiv:1910.13461 [cs.CL]

[29] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov,
Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. 2023.
StarCoder: may the source be with you! arXiv preprint arXiv:2305.06161 (2023).

[30] P. Merrell. 2007. Example-Based Model Synthesis. In Symposium on Interactive
3D Graphics (i3D).

[31] Jean-Baptiste Mouret and Jeff Clune. 2015. Illuminating search spaces by mapping
elites. arXiv preprint arXiv:1504.04909 (2015).

[32] Danil Nagy, Damon Lau, John Locke, Jim Stoddart, Lorenzo Villaggi, Ray Wang,
Dale Zhao, and David Benjamin. 2017. Project Discover: An application of gener-
ative design for architectural space planning. In Proceedings of the Symposium on
Simulation for Architecture and Urban Design. Society for Computer Simulation
International, 7.

[33] D Nagy, L Villaggi, and D Benjamin. 2018. Generative urban design: Integration of
financial and energy design goals in a generative design workflow for residential
neighborhood layout. In Symposium on Simulation for Architecture and Urban
Design.

[34] Danil Nagy, Lorenzo Villaggi, Dale Zhao, and David Benjamin. 2017. Beyond
heuristics: a novel design space model for generative space planning in architec-
ture. (2017).

[35] Giuseppe Paolo, Alban Laflaquiere, Alexandre Coninx, and Stephane Doncieux.
2020. Unsupervised learning and exploration of reachable outcome space. In
2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
2379–2385.

[36] B. C. Paulson. 1976. Designing to Reduce Construction Costs. Journal of the
Construction Division 102, 4 (1976), 587–592.

[37] Justin K Pugh, Lisa B Soros, and Kenneth O Stanley. 2016. Quality diversity: A
new frontier for evolutionary computation. Frontiers in Robotics and AI 3 (2016),
40.

[38] Nemanja Rakicevic, Antoine Cully, and Petar Kormushev. 2021. Policy manifold
search: Exploring the manifold hypothesis for diversity-based neuroevolution.
In Proceedings of the Genetic and Evolutionary Computation Conference. 901–909.

[39] Franz Rothlauf and Franz Rothlauf. 2006. Representations for genetic and evolu-
tionary algorithms. Springer.

[40] The Construction Users Roundtable. 2004. Collaboration, Integrated Information,
and the Project Lifecycle in Building Design, Construction and Operation. Technical
Report WP-1202. Introduction of the "MacLeamy Curve".

[41] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2020.
DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter.

arXiv:1910.01108 [cs.CL]
[42] S Sudhakaran, M González-Duque, C Glanois, M Freiberger, E Najarro, and S

Risi. [n. d.]. MarioGPT: open-ended text2level generation through large language
models (2023). arXiv preprint arxiv:2302.05981 ([n. d.]).

[43] Shyam Sudhakaran, Miguel González-Duque, Claire Glanois, Matthias Freiberger,
Elias Najarro, and Sebastian Risi. 2023. Prompt-guided level generation. In
Proceedings of the Companion Conference on Genetic and Evolutionary Computation.
179–182.

[44] Graham Todd, Sam Earle, Muhammad Umair Nasir, Michael Cerny Green, and
Julian Togelius. 2023. Level Generation Through Large Language Models. In
Proceedings of the 18th International Conference on the Foundations of Digital
Games. 1–8.

[45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2023. Attention Is All
You Need. arXiv:1706.03762 [cs.CL]

[46] L. Villaggi, D. Nagy, and J. Stoddart. 2018. Generative Design for Architectural
Space Planning. In Autodesk University. Las Vegas.

[47] Lorenzo Villaggi, James Stoddart, and Adam Gaier. 2022. Harnessing Game-
Inspired Content Creation for Intuitive Generative Design and Optimization. In
Design Modelling Symposium Berlin. Springer, 149–160.

[48] Xiang Xu, Pradeep Kumar Jayaraman, Joseph G Lambourne, Karl DD Willis, and
Yasutaka Furukawa. 2023. Hierarchical neural coding for controllable cad model
generation. arXiv preprint arXiv:2307.00149 (2023).

[49] Xiang Xu, Karl DD Willis, Joseph G Lambourne, Chin-Yi Cheng, Pradeep Kumar
Jayaraman, and Yasutaka Furukawa. 2022. SkexGen: Autoregressive generation
of CAD construction sequences with disentangled codebooks. arXiv preprint
arXiv:2207.04632 (2022).

[50] Yulun Zhang, Matthew C Fontaine, Amy K Hoover, and Stefanos Nikolaidis. 2022.
Deep surrogate assisted map-elites for automated hearthstone deckbuilding. In
Proceedings of the Genetic and Evolutionary Computation Conference. 158–167.

https://github.com/features/copilot
https://github.com/features/copilot
https://github.com/mxgmn/WaveFunctionCollapse
https://github.com/mxgmn/WaveFunctionCollapse
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1706.03762

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia Adam Gaier, James Stoddart, Lorenzo Villaggi, and Shyam Sudhakaran

APPENDIX
A SOURCE CODE
Source code can be found linked from the project’s permanent home: https://tilegpt.github.io

B WFC BASE DESIGNS

Table 1: Base designs used by Wave Function Collapse. WFC learns a set of adjacency rules from a small set of examples. In this
work, which generated 50,000 different samples for two different datasets, the generator was based off the adjacency rules
learned from just the above five layouts.

C FULL TILE TO TILE TO CHARACTER ENCODING

Figure 9: Complete set of possible tile states used in WFC. 216 tile states in total, including rotations and reflections, are derived
from the WFC samples. When fixed during evolution, or fed to the language mode as tokens, these states are simplified to their
functional category on the right.

https://tilegpt.github.io

	Abstract
	1 Introduction
	2 Background
	2.1 Wave Function Collapse
	2.2 Quality-Diversity
	2.3 Language Models

	3 Method
	3.1 Dataset Generation
	3.2 Language Model Training
	3.3 Layout Generation

	4 Experiments
	4.1 Setup
	4.2 Results

	5 Discussion
	References
	A Source Code
	B WFC Base Designs
	C Full Tile to Tile to Character Encoding

