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To support intelligent computer-aided design (CAD), we introduce a machine learning
architecture, namely HG-CAD, that recommends assembly body material through joint
learning of body- and assembly-level features using a hierarchical graph representation.
Specifically, we formulate the material prediction and recommendation process as a
node-level classification task over a novel hierarchical graph representation of CAD
models, with a low-level graph capturing the body geometry, a high-level graph represent-
ing the assembly topology, and a batch-level mask randomization enabling contextual
awareness. This enables our network to aggregate geometric and topological features
from both the body and assembly levels, leading to competitive performance. Qualitative
and quantitative evaluation of the proposed architecture on the Fusion 360 Gallery Assem-
bly Dataset demonstrates the feasibility of our approach, outperforming selected computer
vision and human baselines while showing promise in application scenarios. The proposed
HG-CAD architecture that unifies the processing, encoding, and joint learning of multi-
modal CAD features indicates the potential to serve as a recommendation system for
design automation and a baseline for future work. [DOI: 10.1115/1.4063226]
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1 Introduction
As a critical aspect in design automation and mechanical engi-

neering, appropriate material selection is a demanding task that
requires a devotion of time and expertise through joint analysis of
performance, manufacturability, and sustainability [1,2]. Given
this challenge, the integration of intelligent tools, such as the appli-
cation of emerging machine learning algorithms to existing engi-
neering systems, could be explored to assist designers with
varying expertise by providing material selection recommendations
learned from prior designs in an automated manner [3]. For
example, intelligent agents trained on knowledge graphs generated
from large-scale design data could help facilitate material selection
processes that require extensive evaluation of trade-offs between
diverse material candidates. However, there is an opportunity to
expand on prior work toward later phases of the design process
by extracting design knowledge from computer-aided design
(CAD) models to complement existing semantic networks.
In the design domain, CAD tools are used to digitally create 3D

models of physical objects and represent various design aspects,
including the geometries, topologies, dimensions, tolerances,
degrees-of-freedom, material information, and relative motions of
components [4]. CAD tools consider material properties and inter-
activity characteristics between different materials, typically used
for simulation to optimize the design or for rendering workflows.
Both activities help designers assess and visualize trade-offs
between different materials and identify the best materials for the
design. Most recently, several large datasets of curated CAD
models have been made publicly accessible that support machine
learning methods for various data-driven design applications [5–
7]. For creating representations of CAD models compatible with
machine learning methods, graph data structures have been lever-
aged to represent design data and to capture various relationships,
including semantic relationships between engineering and design
concepts [8], joint relationships between parts in assemblies
[9,10], and relationships between entities in boundary-representa-
tions (BREPs) [10–12]. Simultaneously in product design, efforts
to consolidate design knowledge in knowledge graphs have resulted
in robust graph representations of domain-specific semantic rela-
tionships, which have proven useful for concept generation and
evaluation [13–15].

In this paper, we present HG-CAD (Fig. 1), a learning-based
approach to predict the material of each part in the assembly.
Despite the abundance of 2D drawings and 3D CAD design repos-
itories, the automated prediction of part materials in mechanical
design remains challenging due to the ambiguity between the multi-
modal design knowledge and their relationships to material selec-
tion. As illustrated in Fig. 2, the geometry and ground-truth materi-
als of bodies might not have a one-to-one mapping. For example, a
screw can be either ferrous or non-ferrous metal, depending on
various design requirements such as cost, weight, corrosion resis-
tance, adjacent parts’ material, the assembly it belongs to, and its
function. This dependency on context introduces additional com-
plexity for existing classification methods that rely on visual recog-
nition. Therefore, their structural and contextual information must
be considered to facilitate the accurate classification of bodies
within assemblies. Leveraging the expressive power of graphs,
we propose a graph neural network (GNN)-based architecture in
which material prediction is posed as a node prediction task. Moti-
vated by the importance of material selection to support design
automation, this unified architecture is expected to aid designers
in selecting appropriate materials by providing part-level material
suggestions given a product assembly. We validate the method
through quantitative and qualitative evaluation against computer
vision and human baselines using the Fusion 360 Gallery Assembly
Dataset [9].
To summarize, our work incorporates the following stages and

contributions to the areas of design automation and engineering:

(1) We study the material prediction task for design automation
and devise a novel hierarchical graph representation of CAD
assemblies to capture geometric and topological information
from body and assembly levels.

(2) We propose HG-CAD, which leverages the hierarchical
graph representation of CAD assemblies for automatic pre-
diction and recommendation of materials in unseen assem-
blies using graph neural networks while preserving
contextual awareness using batch-level mask randomization.

(3) We evaluate the effectiveness of the proposed architecture
by conducting quantitative and qualitative experiments,
demonstrating competitive performance as compared to
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state-of-the-art learning-based models while providing
insights and potential applications regarding strengths and
limitations through a comparison with a human baseline.

(4) We provide open-source code and documentation for the
proposed HG-CAD architecture (with data extraction, pro-
cessing, baseline model variations, hierarchical graph con-
struction, and learning toolkit)2 for reproducibility and
further research while being fully compatible with the scal-
able Fusion 360 Gallery Assembly Dataset [9].

2 Related Work
We review prior work on material selection, machine learning

algorithms based on deep neural networks, and representation
methods tailored to CAD design automation. Reflecting on these
past work, we provide deeper insights into the vision and motiva-
tion of the proposed work.

2.1 Material Selection in Product Design. In product design,
material selection can be broken down into a general five-step pro-
cedure: (1) establishing design requirements, (2) screening materi-
als, (3) ranking materials, (4) researching material candidates, and
(5) applying constraints to the selection process [2]. Performance
indices and material property charts, called Ashby diagrams, are
often used to visualize, filter, and cluster materials [2,16]. Commer-
cial tools such as Granta CES Edupack allow designers to compare

thousands of materials based on user-input design requirements and
constraints [17]. Product designers aim to meet customer needs and
technical requirements, but the wide range of consumer products,
manufacturing methods, and supply chain availability complicate
the material selection process [18]. Accordingly, material aspects
such as quality, cost, and function must be considered during
product design as they directly contribute to the product’s success
and its economic, environmental, and social impacts [19–21]. Mate-
rial selection is further complicated when working with complex
assemblies, as the material of individual parts also affects the
assembly integration process [22].
Prior work on automated material selection focuses on specific

classes of objects (e.g., nozzles and beams) [23–26] and specific
design functions (e.g., heat transfer and storage) [27] and is often
treated as an optimization problem where the best material is
selected based on some required performance criteria [21,28,29].
Despite a few approaches being proposed to leverage neural net-
works (NNs) for material screening, they are limited in that they
do not rank the selected materials [30]. Zhou et al. combine a two-
layer NN with a genetic algorithm for selecting appropriate sustain-
able materials and validate their model on the design of a drink con-
tainer [31]. Chandrasekhar et al. [26] leverage a variational
autoencoder to project a discrete material database onto a differenti-
able latent space and couple it with a geometry encoder NN to
simultaneously optimize the geometry and the material of a beam
structure. Our method differs in that it only requires design infor-
mation commonly documented in CAD, is agnostic to the manufac-
turing method and class of objects, and does not aim to find the most
optimal material but suggests top-ranked appropriate materials to

Fig. 1 Proposed method for predicting materials of assembly bodies using hierarchical graph representation and learning

Fig. 2 Two sample assemblies where the color of the assembly body represents the material
category. The rounded head screws in assembly: (a) and assembly (b) are made of different
materials, despite their geometric similarity.

2https://github.com/BrandonBian/hg-cad
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the designer during the design process, thereby supporting user cre-
ativity and design flexibility.

2.2 Convolutional and Graph Neural Networks. Convolu-
tional neural networks (CNNs) are a class of artificial neural net-
works predominantly used for feature representation and learning.
Specifically, CNNs apply filters via sliding a kernel over the multi-
dimensional input embeddings to perform convolution and pooling
processes that extract, summarize, and represent the presence of
detected features, which can be subsequently passed through a feed-
forward neural network for representation learning tailored to tasks
such as classification through activation. Due to the flexibility of the
kernel dimensions, CNNs can effectively extract features of various
scales of details that can be pooled into a unified representation and
are thus most dominantly used for visual representation in computer
vision [32,33].
Like CNNs, GNNs are a category of deep neural networks

designed to perform learning and inference on data described by
graphs and distributed in a non-Euclidean space. Message passing
for representation learning in GNNs mainly consists of two main
steps: aggregation, in which we collect features from topological
neighboring nodes and edges; combination, in which we integrate
the aggregated features into a single-node representation, later
pooled to form graph representations. Specifically, GNNs learn rep-
resentations over order-invariant data structured as graphs and often
of variable sizes through an iterative process of transferring, trans-
forming, and aggregating the representations with topological
awareness [34–39]. The learned representations are combined into
a graph-level representation, which can be used to perform tasks
such as node, edge, and graph-level classifications.
In the proposed work, we leverage both types of neural networks

to enable adequate representation and learning of CAD through
joint exploitation of geometrical and topological features. In
summary, the proposed architecture represents both CAD assem-
blies and bodies as hierarchical graphs, where the bodies are struc-
tured as graphs within assembly graphs and the assemblies are
structured as super-nodes consisting of sets of body graphs,
similar to the architecture proposed by Xing et al. [40]. CNNs are
utilized for body-level geometrical representation extraction and
encoding, whereas GNNs are adopted to perform topological repre-
sentation learning with structural and contextual feature awareness.
The proposed work’s combination of both neural networks in an
end-to-end paradigm allows for joint geometrical and topological
learning, thus exploiting the utilization of multi-modal CAD fea-
tures to the full extent, allowing for classification and predictions
with effectiveness and efficiency exceeding that of mono-modal
representation learning.

2.3 Graph Representation of Computed-Aided Design
Models. The design process is iterative and generates large
amounts of data that can be organized and parsed for additional
information that may be used to improve the design [41]. This infor-
mation, collected from all aspects of the product life-cycle, is
multi-modal and can be in the form of semantic names, customer
requirements, 3D geometry, material properties, manufacturing toler-
ances, cost information, etc. These data may then be used to modify
the design itself, enabling some design process automation by learn-
ing from prior examples [42,43]. Prior work looked at organizing and
learning from design knowledge acquired from sources such as
taxonomy-based design repositories [44,45], product tear-downs
[46], patent data [8], and geometry-based design repositories [47–
49]. When working with geometric data, graphs have been leveraged
to represent BREP geometries with goals ranging from representing
complex relations to solving design problems [11,50–52]. In particu-
lar, UV-Net [12] is a novel neural network architecture that can be
leveraged for classification and segmentation tasks on B-rep data
from 3D CAD models. UV-Net represents each assembly body as
a face-adjacency graph, with face and edge features represented as
a structured grid of UV-grid and U-grid of points, respectively.

Convolutional neural networks are applied on the face and edge fea-
tures that are further message passed using a graph neural network.
The highly expressive nature of graphs in discrete encoding can
also be applied to enable the more sophisticated representation and
learning of multi-modal data. For example, Jones et al. [53] proposed
a structured BREP graph convolution network that utilizes structured
graph representation to encode heterogeneous BREP information,
which prompted the creation of an assembly modeling tool for auto-
matic mating of assemblies by effectively capturing the topological
relations of parts. Similarly, Pfaff et al. [54] applied graph neural net-
works to mesh-based simulation, with an encoder that transforms
mesh into graphs with the addition of edges, a processor that per-
forms convolutional message passing, and a decoder that extracts
signal for updates.
Our proposed work expands on prior literature by augmenting

CAD representations through a novel hierarchical graph representa-
tion and learning architecture, effectively capturing the geometrical
and topological features on both body and assembly levels while
preserving contextual and structural awareness through GNN learn-
ing with node masking for CAD material prediction and
recommendation.

3 Methodology
This section introduces the proposed HG-CAD architecture and

the motivation behind the preprocessing steps for the CAD
dataset. Next, we formulate the proposed hierarchical graph repre-
sentation of CAD models and the detailed methodology for classi-
fying and predicting assembly body materials using joint
geometrical and topological learning with batch-level mask
randomization.

3.1 Architecture Overview. As illustrated in Fig. 1, the pro-
posed material prediction network consists of two primary hierar-
chies: (1) the body-level module that extracts and processes the
CAD body features, represents them in terms of body graphs to
capture topology, and encodes the geometrical and physical features
using different tools and transformations; (2) the assembly-level
module that provides a graph representation of the entire assembly,
passes the topological information and the body-level features col-
lected from the previous module through a graph neural network for
embedding generation, and using a densely connected neural
network for representation learning and prediction.

3.2 Dataset and Preprocessing. The proposed architecture is
compatible with the publicly available Fusion 360 Gallery Assem-
bly Dataset [9]. As illustrated in Fig. 3, each assembly in the dataset
has assembly-level feature properties, which are shared across
numerous bodies connected via assembly relationships. Each
assembly body has a set of body-level design features, and the
bodies are manually organized by users in a hierarchy of occur-
rences, which are the building blocks that make up the assemblies.
The dataset contains 154,468 bodies that are grouped into 8251
assemblies, created across different industries and design categories
and with various levels of detail. This dataset was selected because
of its scalable size, abundant diversity of designs and multi-modal
features, ease of processing, and presence of body-level material
labels. Due to the complexity and diversity of the dataset, prepro-
cessing and feature encoding steps are performed to target the
assemblies and bodies of interest and encode the extracted multi-
modal raw features into comprehensible formats in the learning
architecture. The preprocessing steps on the dataset are as follows.

Data filtering. We drop assemblies that are entirely labeled with
the default material (Steel), resulting in 6336 assemblies.

Material label transformation. Each assembly body within the
assembly dataset is defined with two material labels: a physical
material label that defines the physical and mechanical properties
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of the assembly body for simulation and an appearance material
label used for displaying and rendering the object. Despite the dif-
ferent labels serving distinct purposes, it may be assumed that the
designer intends to have each assembly body defined by one mate-
rial. To reflect this, a transformation process is performed in which
the non-default appearance label is selected as the material ground
truth to replace the default physical material label, if applicable.
This is performed to improve the quality and abundance of ground-
truth labels while attempting to preserve the original design intent.

Material label grouping and dropping. Due to the diversity,
skewness, and sparsity in the distribution of user-defined body-level
materials, a manual regrouping step is taken to reorganize the
ground-truth labels. Specifically, the detailed material labels, as
transformed from the previous step, are mapped to their correspond-
ing generalized material categories as defined in the Autodesk
Fusion 360 material library, which are then regrouped into eight
simplified material groups, as summarized in Table 1, based on a
combination of their primary, secondary, and tertiary subcategories.
After performing the regrouping of material categories for body-
level ground-truth labels, the following two groups are dropped:
Metal_Ferrous_Steel, which contains only the default carbon
steel material and is thus less relevant to the material prediction

task, and Paint, which contains generic and rendering material
that is ambiguous and does not reflect meaningful design or physi-
cal properties. More specifically, the motivation for dropping the
Metal_Ferrous_Steel label is double-fold: (1) it is configured as
the default material label for design bodies in the Autodesk
Fusion 360 platform, which makes it irrelevant as they do not
contain sufficient user-configured information to benefit the
model’s training, and (2) it is a dominant label that introduces
label imbalance which induces prediction bias. Therefore, the
regrouping step of ground-truth labels effectively reduces the com-
plexity and distributional skewness while preserving logical cor-
rectness, whereas the dropping of default and paint-related
material groups alleviates the confusion incurred during the archi-
tecture learning process. In addition, incorporating the final six sim-
plified material groups in the prediction pool enables more flexible
and scalable recommendation outputs than solely considering the
exact material labels, thus leaving room for the creativity and
freedom of designers.

3.3 Hierarchical Graph Representation. Despite multi-
modal expressive features, the CAD assemblies and their corre-
sponding bodies are difficult to encode and may introduce
complications when directly delivered into machine learning archi-
tectures. Therefore, we represent CAD assemblies using a graph
representation, wherein, body attributes are captured as node fea-
tures and topology is captured using edges:

3.3.1 Body-Level Graph Representation. As illustrated in
Fig. 4(c), we define body graphs as attributed and directed
face-adjacency graphs representing CAD assembly bodies, where
the visible parametric surfaces are represented as nodes, and the
visible interval of the parametric boundary of faces are represented
as edges that connect two faces that are adjacent to each other. For
graph feature generation, we follow the methodology as introduced
in UV-Net. Specifically, we generate the body graph node features
by parameterizing assembly body surfaces as sets of 2D features
constituted of the absolute 3D normalized coordinates sampled
from surface domains with a uniform step size. Similarly, body
graph edge features are created by parameterizing boundaries as
sets of 1D features constituted of absolute point coordinates
sampled from its parameter domain with a uniform step size. The
node and edge feature matrices generated by a stacking of individ-
ual feature vectors, along with the connectivity information of
nodes, are organized into deep graph library (DGL) [55] graph
object instances and are subsequently delivered into the learning

Table 1 Table of the simplified ground-truth material groups

Simplified material
group Definition Example(s)

Label
count

Metal_Aluminum Aluminum-based
metal

Aluminum
alloy

10,606

Metal_Ferrous Ferrous metal
(excluding carbon
steel)

Cast iron 7138

Metal_Ferrous_Steel
(dropped)

Carbon steel Carbon steel 39,891

Metal_Non-Ferrous Non-ferrous metal Platinum,
silver

16,276

Other Uncategorized
material

Glass, fabric 15,028

Paint (dropped) Generic, rendering,
and coating material

Metal flake 13,193

Plastic Plastic Thermoplastic 20,063
Wood Natural and

engineered wood
Softwood 9107

Fig. 3 An example assembly of two bodies with corresponding features and connection relationships
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architecture along with the assembly-level graphs created according
to the subsequent section.

3.3.2 Assembly-Level Graph Representation. As illustrated in
Figs. 4(a) and 4(b), we define assembly graphs as attributed and
directed multi-graphs representing entire CAD assemblies, where
bodies corresponding to individual parts are encoded as graph
nodes. Connections representing assembly relationships between
the bodies are encoded as edges between corresponding nodes.
When constructing assembly graph node features, we consider

the following three assembly body physical properties: body
area represented in square meters, body volume represented
in cubic meters, and body center of mass represented in the
x, y, z coordinates. All physical properties are generated by Auto-
desk Fusion 360 and are numerical. Standard scaling transformation
is applied to each physical property to generate their corresponding
physical feature embedding vectors. We further consider the fea-
tures defined at the assembly level and are thus shared among the
bodies of the same assembly globally. These features include
the assembly physical properties and assembly
geometric properties, which are integrated from individual
assembly body properties, as well as design category,
industry, and products that the assembly belongs to. Gener-
ally, global features represented as floating-point or integer numbers
are preserved and normalized using standard scalar transformation,
whereas categorical features represented as character strings are
one-hot encoded. When constructing assembly graph edge features,
we entail the following three predominant types of connection
relationships: contacts define the relationship between two
bodies whose faces are in contact with each other; joints
define the relationship between two bodies whose relative
pose and degrees-of-freedom are constrained; occurrence
relationship represents the user-assigned relative hierarchy
of the bodies, such as multiple bodies sharing the same occurrence,
or distributed across a parent–child occurrence relationship. These
three connection types, being categorical, are encoded using the
one-hot method and serve as the edge features.
The resulting graph is attributed since each node and edge is

attached with features that effectively capture the physical and
structural information. The graph is directed since each edge con-
tains a source node, a destination node, and a direction that corre-
lates the two nodes. Furthermore, the graph is a multi-graph since
it allows the existence of multiple edges between any pair of
nodes. Once the assembly graphs are constructed, instances with
less than three nodes or less than two edges are considered trivial
and are thus discarded. Following the reasoning in Sec. 3.2,
the nodes with ground-truth material category labels of
Metal_Ferrous_Steel and Paint are dropped, and the
edges connected to them are removed accordingly from the

connectivity matrices. The node and edge feature matrices are gen-
erated by stacking individual feature vectors and the shared global
features. The feature matrices and the connectivity information of
nodes represented in coordinate (COO) format are organized into
PyTorch Geometric [56] graph objects and are subsequently deliv-
ered into the learning architecture along with the body-level graphs
created according to the prior section.

3.4 Hierarchical Learning Architecture. Building on the
hierarchical graph representation of CAD assemblies, we present
the learning architecture of HG-CAD, in which we utilize graph
neural networks to generate graph embeddings in both body and
assembly hierarchies by passing node-level feature messages
through convolution.
We denote a set of assembly graphs of interest constructed

from Sec. 3.3.2 as G = Gk{ }Nk=1, with individual graphs as
Gk = V, E, G, M, Y( ), each of which consists of a set of body
nodes V = {v1, v2, . . . , v|V|} (carrying node features hi ∈ RdV ), a
set of assembly relationship edges E = {eij = (vi, vj)} ⊆ V × V (car-
rying edge features hij ∈ RdE ), a set of body graph embeddings G =
{g1, g2, . . . , g|V|} corresponding to each body node, a mask-
ing matrix M = {�m1|�m2| · · · |�m|V|} such that �mi ∈ {�0, �1}
(i ∈ 1, . . . , |V|) representing the validity of body graph embedding,
and a set of ground-truth material category labels Y =
{y1, y2, . . . , y|V|} corresponding to each node. The topological rep-
resentation learning process can be formulated as a supervised node
classification task, in which a node-level representation hv (∀v ∈ V)
is learned from a combination of the assembly graph topology,
assembly graph node and edge features, and the body-level geomet-
ric embedding, such that the ground-truth material category label
for each body can be predicted.
During the training time, at a certain l∈ {1, …, L} layer of the

graph neural network, message passing is performed between
direct neighbors through neighborhood aggregation, where the rep-
resentation of a certain node vi ∈ V is iteratively updated by a com-
bination of aggregated neighboring node and edge features, as
defined below:

h(l)vi = ϕ(l)
c h(l−1)vi

,
⋃
vj∈N i

ϕ(l)
a h(l−1)vi

, h(l−1)vj
, hij

{ }⎛
⎝

⎞
⎠ (1)

where h(l)vi denotes the representation of node vi at layer l of the
neural network, and ϕc(.) and ϕa(.) denote the parametric combina-
tion and aggregation functions. N i denotes the topological neigh-
bors of node vi, and the representation of node vi during the
aggregating step contains a concatenated feature of body-level geo-
metrical representation generated from the DGL body graphs gi and
the corresponding masking matrix for the elimination of invalid

Fig. 4 We represent each CAD assembly (a) as a graph with two hierarchical layers. Our top-level assembly graph (b) contains
bodies as nodes and connection types as edges. At the next level, body graph (c) contains B-Rep faces as nodes connected by
adjacency edges.
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embeddings, as defined below:

N i = vi ∈ V : ∃eij ∈ E{ }
, hlvi = [hlvi‖glvi �mvi ] (2)

where the body graph geometrical embedding of a graph node at a
given layer glvi is generated by a summation aggregation of the body
graph’s node features (2D convoluted from parameterized surface
coordinates) and edge features (1D convoluted from parameterized
boundary coordinates) using a multi-layer perceptron, following the
learning architecture as introduced in UV-Net [12].
GraphSAGE [57] is selected for the assembly-level graph neural

network layers, utilizing a mean aggregator. The graph connectivity
information, concatenated node, and edge feature matrices are
passed into the GNN encoder during the training process. The
node and edge embedding is obtained after message passing of
each neural network layer, and non-linear activation via leaky rec-
tified linear unit [58] is performed. For generating the final node
embedding to perform node classifications on the input graph, a
similar procedure as the jumping knowledge networks [59] is per-
formed by aggregating the node embedding of individual GNN
layers from the learning architecture through max-pooling. The
final embedding is then passed through a multi-layer perceptron
with batch normalization layers [60], parametric rectified linear
unit [61] for non-linearity activation, and softmax activation for pre-
dicting class distributions. Weighted cross-entropy loss is adopted
to prevent the neural network from overlooking rare classes. The
weights for each class are initialized as inversely proportional to
the ground-truth class frequencies.
Considering application scenarios, we propose batch-level mask

randomization, in which ground-truth material category labels are
injected into portions of assembly graph nodes using randomized
masking to prompt the neural network learning toward fully exploit-
ing the contextual design knowledge and user-introduced informa-
tion. Motivated by the fact that designers may have access to
material information for completed portions of their design assem-
blies, we inject ground-truth material category labels as additional
node features into all but one of the assembly graph nodes (referred
to as context nodes) and predict the labels for the one node without
the ground-truth information (referred to as target nodes). For the
single target node of the assembly graph, a vector of zeros is
attached to the node feature matrix to simulate the masked ground-
truth information. Only the ground truth and predictions of the
batched assembly graphs’ target nodes are involved in the loss calcu-
lation process during training and validation steps and the accuracy
calculation process during testing. During the message passing
process within the neural network layers, the context nodes pass
their embedding through the edges to the target nodes, updating
their embedding. This prompts the GNN to predict the target
nodes by learning from both the topology of the graph and the
ground-truth labels contained within the neighboring context
nodes, thereby achieving structural and contextual awareness.

4 Experiments
In this section, we analyze and evaluate the performance of our

architecture through experiments on the Fusion 360 Gallery

assembly dataset. Specifically, we consider the following three
baselines of machine learning classification models: (1) UV-Net
[12], which exploits geometry as sampled from solid surfaces and
edges together with topology structured as graphs; (2) PointNet
[62], which samples point clouds on mesh surfaces to perform
object classification on CAD models; (3) MVCNN [63], which
uses a CNN architecture that combines 2D geometry obtained
from multiple views of a 3D model to perform recognition and
inference. We also consider a human baseline, for which we ask stu-
dents from mechanical engineering backgrounds to provide manual
body-level predictions on existing design assemblies.

4.1 General Setup. To ensure a fair comparison, we split the
constructed assembly graphs obtained from Sec. 3.3.2 into the train-
ing, validation, and test sets, which remain fixed across all models
(but excluding the human baseline). Specifically, we generated the
training, validation, and test sets based on the proportions of 64%,
16%, and 20%, respectively, through a random sampling process on
the assembly graphs, repeated for a total of three iterations with dif-
ferent random seeds. Furthermore, we provide the configuration of
the proposed model and the baselines to ensure reproducibility, as
summarized in Table 2 and detailed in the following paragraphs.

HG-CAD (ours). The assembly-level graph neural network con-
sists of seven GraphSAGE layers with a hidden dimension of 256.
This configuration is determined through an extensive grid search
on the number of GNN layers (ranging from 1 to 8) and the size
of hidden dimensions (64, 128, 256, and 512). For the training
process, we adopted the Adam optimizer [64] with a learning rate
of 0.001 and a cosine annealing scheduler [65] with the
maximum iteration set to be equivalent to the number of epochs
for learning rate tuning. After obtaining the embedding from each
layer, a leaky rectified linear unit with a negative slope set to 0.2
is applied for non-linear activation. For the body-level learning
architecture, we follow the same setting as that of UV-Net. The
architecture is implemented with a combination of PyTorch geo-
metric and PyTorch lightning. Training is performed with an
early stopping of 30 epochs, and the model with the least validation
loss is selected as the best for testing. To further investigate the
effectiveness of the hierarchical graph representation in capturing
contextual information, we configured our model to produce a var-
iation in which the randomized node masking is removed.

UV-Net. By removing from our model the assembly-level GNN,
we are left with only the part-level GNN, which leverages UV-Net
to represent the part geometry. We use the official implementation3

of the UV-Net [12] classification model where the final linear layer
was modified to output six classes. Each B-rep body is converted
into face-adjacency graphs with 2D and 1D UV-grids as node and
edge features, respectively, where we used ten sample points for
the u- and v-directions as in the original implementation. The
model was trained with the Adam optimizer [64] for 350 epochs,
and the weights of the model corresponding to the minimum valida-
tion loss were used in our experiments.

PointNet. For each input body-level geometry encoded as trian-
gulated B-Rep representation, 2048 points are randomly sampled.
An Adam optimizer with a learning rate of 0.001 and a momentum
of 0.9 is used. Sparse categorical cross-entropy is used to calculate
loss, and a dropout rate of 0.3 is used on the last fully connected
layer of hidden dimension 256 to alleviate overfitting. PointNet is
implemented using TensorFlow, and the model is trained until the
convergence of validation loss.

MVCNN. The MVCNN is trained using a PyTorch implementa-
tion and uses the ResNet architecture [66] with a supervised learn-
ing regime. A patience factor is used to stop the training process

Table 2 Table of the hyperparameters of the model and
baselines

Model Epochs
Learning

rate
Batch
size

Hidden
dimension

HG-CAD
(ours)

Early stopping
of 30

0.001 16 256

UV-Net 350 0.001 128 64
PointNet Until

convergence
0.001 128 256

MVCNN 30 0.0001 8 512
3https://github.com/AutodeskAILab/UV-Net
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after 20 epochs, which increases the validation accuracy, result-
ing in around 30 training epochs. The models are trained with
eight as the batch size, 512 embedding dimensions, 12 views, and
1 × 10−4 learning rate.

Human baseline. To compare the performance of the proposed
work to that of humans, we asked three Master’s students to
provide their predictions of material category labels for assembly
bodies. Specifically, we randomly sampled 300 assemblies from
the entire dataset and dropped the assembly bodies whose ground-
truth material groups were Metal_Ferrous_Steel or Paint, simulat-
ing the process as described in Sec. 3.2. To ensure fairness of
comparison, we sought to reproduce the information provided to
the baseline models by presenting the human labelers with an inter-
active user interface containing the following content: 2D thumb-
nail images of the assembly body and its corresponding assembly,
3D rendered and interactive display of the assembly geometry
with the body portion highlighted, semantic names and physical
properties of the body, as well as the assembly-level global features.
For each assembly body, the students are asked to classify its mate-
rial into one of the six material groups listed in Table 1 based on
their experience, expertise, and the provided information.
Figure 5 shows an example human labeling template.

4.2 Quantitative Evaluation. Table 3 summarizes the quanti-
tative results of the experiments compared between the proposed
model and the baselines. To evaluate the multi-class classification
performance and consider the skewness of ground-truth material
group distribution, we record the micro F1 score calculated by
weighting each prediction instance equally. The performance statis-
tics of each model are recorded per iteration and are averaged across
the iterations to calculate the mean and standard deviations. For
evaluating the human baseline, the human labelers’ body-level pre-
dictions are concatenated and compared via one-to-one mapping to
the corresponding assembly body’s ground-truth material group.
Due to having only one iteration over the 300 assigned assemblies,
the human baseline performance does not have a standard deviation.
From the numerical results, we infer that material prediction in

CAD is generally a highly challenging task for both machine learn-
ing models and human labelers, due to the highly variational

distribution of body geometry and assembly ground truth. The
proposed HG-CAD, when producing predictions of all body mate-
rials of an assembly without referencing contextual material infor-
mation, produced results that are only sparingly above that of the
baseline. However, when enabling the joint learning of assembly
topology and part geometry with contextual information using
node masking, the proposed architecture achieves an average of
0.59 micro F1 score, which surpasses that of the baseline machine
learning models that mainly rely on geometry. This supports our
hypothesis that the task of material selection depends on multiple
factors other than the geometric features of the design, namely the
topology of assembly bodies that enable contextual awareness
during hierarchical graph learning. To further investigate the per-
formance discrepancies and the human baseline results, we plot
the classification confusion matrices for the models displayed in
Fig. 6.
An ideal confusion matrix for a classification model with the best

classification should demonstrate clear diagonal patterns with no
shades in other regions. From the confusion matrices, we observe
that UV-Net and PointNet misclassify most material categories as
Plastic, as observed by the significant shades in the plastic
column. This is because the Plastic category is a majority class,
with many samples dominating the other classes. The imbalance
of label count could have misguided these two models to make pre-
dictions biased toward the Plastic category. UV-Net demonstrated
less confusion and thus better classification performance than Point-
Net, possibly due to the inclusion of body-level topology with graph
representations. MVCNN showed a clearer diagonal pattern, but
confusion still persists with the Metal_Non-Ferrous and Other
groups. The proposed model, deprived of material context informa-
tion shared during message passing and learned via node masking,

Table 3 Table of the experimental results for the material
prediction task

HG-CAD
HG-CAD
(no mask) UV-Net PointNet MVCNN Human

Acc. 0.59± 0.031 0.30± 0.020 0.29± 0.012 0.26± 0.008 0.26± 0.008 0.35

Fig. 5 An example graphical user interface display for human baseline
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demonstrated similar confusion as the computer vision baselines,
though with a slight alleviation in severity. Significant confusion
is observed for the human baseline, where no assembly body was
classified as Metal_Aluminum. This may be because Metal_Alumi-
num is a precise and exclusive class compared to the other five more
general and inclusive categories, and human labelers confused alu-
minum material with a non-ferrous metal material. Compared to the
four baselines, HG-CAD’s classification performance is superior,
showing a much clearer diagonal pattern and, thus, less confusion
during prediction. There is still a slight prediction pattern biased
toward the majority class of plastic, but the effect is minimal.
These results, together with the observation illustrated in Fig. 2,
demonstrate that representation learning on geometry only is insuf-
ficient for making body-level material prediction and classification
and that the inclusion of topology via graphs as well as neighbor-
hood context via random masking can greatly reduce confusion.

4.3 Qualitative Evaluation. To investigate the prediction
results in a real-world use case setting and to gain further insights
for potential application, we provide a set of rendered assemblies
to compare the prediction results of our model and that of the base-
lines in a qualitative manner. Specifically, we select four assemblies
from a union of the test set of the machine learning-based models
and that of the human baseline. The chosen assemblies are delivered
into the machine learning models pre-trained on the fixed train-test
split, and the inference results of body-level material predictions are
produced. Subsequently, the 3D models of the chosen assemblies
are rendered with colors corresponding to the predicted material
categories.
Illustrated in Fig. 7 is the visualized qualitative comparison. The

gray color represents the material categories Metal_Ferrous_Steel
and Paint, which are dropped and therefore do not participate in
the evaluation process. From the visualized comparison, our pro-
posed model can function well when dealing with bodies of
similar geometry and symmetrical distribution in space. For
example, our model predicted almost perfectly the material category
of the pistons in the first sample assembly, whereas the predictions
of the other baseline models are rather arbitrary. This demonstrates
that our model can effectively exploit the body-level geometrical

information in conjunction with assembly-level topological infor-
mation through the proposed joint representation learning method-
ology. For the performance on the latter three assemblies, the
baseline models gave predictions inconsistent with the ground
truth, often confusing the aluminum metal category (blue) with
the non-ferrous metal category (orange). A similar confusion
within the metal categories can be observed for the human baseline
predictions, where almost all metal occasions are misclassified as
Metal_Ferrous. The qualitative evaluation demonstrates the effec-
tiveness of the proposed joint learning of topological and geo-
metrical representation methodology compared to baseline methods
that rely on only a single aspect of CAD representation.

5 Discussion
5.1 Limitations and Improvements

5.1.1 Data and Model Augmentation. While running single-
node prediction experiments, we observed that the inference confu-
sion decreases with increasing training and validation assemblies.
Despite the batch-level randomized node masking process, only
one node per assembly graph participates in the loss calculation
for training and validation; thus, the support for each class is dimin-
ished, which may lead to problems such as overfitting. Therefore,
additional steps should be taken to perform data and graph augmen-
tation to alleviate this issue. For collecting additional CAD data
with a more varied distribution of features and ground-truth materi-
als, we seek to expand the currently adopted Fusion 360 Gallery
Assembly Dataset by inviting more designers to contribute or by
using additional publicly available datasets such as ABC and Auto-
Mate [6,53]. For graph-level augmentation, existing graphs can be
manipulated to generate additional training and validation samples,
such as by creating sub-graphs or synthesized graphs from past
designs through node dropping, edge dropping, or sub-graph sam-
pling [67]. Existing tools designed to support automated reasoning,
such as Open-NARS [68], could also be applied to the machine
learning process to support the inference and imputation of rare
material classes. Since neural networks require abundant high-
quality training samples, incorporating the reasoning system
might provide a more balanced approach through deduction,

Fig. 6 A comparison of classification confusion matrices for the material prediction task
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abduction, and induction reasoning. In addition, future work can be
directed to experimenting with a more diverse set and combination
of the neural network building layers. In the current iteration, we
examined the performance with graph attention networks (GATs),
graph isomorphism networks (GINs) as well as linear transforma-
tion layers as suggested in Ref. [31], and observed significant over-
fitting of the training dataset due to the uneven distribution of
assembly architectures and material selections, as indicated in the
convergence graph of Fig. 8. Furthermore, due to the highly vari-
able discrepancies between the topology and structure of design
assemblies, more experimental iterations should be performed
with diverse splits. Similarly, we also intend to extend our human
baseline sample size by incorporating human participants from dif-
ferent realms of engineering and expertise levels for a more compre-
hensive investigation and analysis of human engineers’ prediction
patterns.

5.1.2 Functional and Behavioral Information. The current
stage of work focuses on the structural aspect of objects, including
the geometric and physical properties of bodies and the assembly
relationships that correlate them. While structural analysis has
proven to be successful in the derivation and tabulation of material
performance indices for standard mechanical design cases [69], the
functional and behavioral aspects of the design are also highly
influential to material selection [2,70]. Therefore, one promising
improvement would be incorporating the functional informa-
tion (i.e., the purpose) and the behavioral information (i.e., the attri-
butes) of bodies as node features to provide more context for
learning. Functional and behavioral information might be inferred
from the name of parts in the assemblies, and prior work has
shown promise in learning from these natural language labels com-
monly found in CAD [44,71], and large language models could be
leveraged for transfer learning. While body-level semantic names
might implicitly represent some functional and behavioral infor-
mation, introducing additional user inputs (e.g., cost and size
requirements) would enable predictions tailored to specific design
requirements.

5.2 Future Plans

5.2.1 Regression Model for Material Properties. One limita-
tion of the proposed work is its dependency on the Autodesk
Fusion 360 Assembly Dataset and its categorical material library.
Specifically, new designs from the Fusion 360 Gallery can be
imported as additional data during training and inference. For a
new assembly design acquired from the Autodesk Fusion 360
gallery, it can be encoded as a JSON file automatically by the
FUSION 360 software along with the thumbnail images and 3D
object files, where the embedding dimensions of the body-level fea-
tures are automatically handled by the underlying UV-Net architec-
ture. The dimensions of the graph embedding are determined by the
hyperparameters defined by the user in the HG-CAD architecture.
Despite alleviating possible confusion by dropping bodies of
default and paint material, the regrouping process may introduce
bias that limits the trained model’s application to only materials
found in the original dataset, thus limiting scalability and might
not suit the needs of designers in different industries. A possible
improvement might be to restructure the problem as a regression
task and develop a model to predict relevant physical and mechan-
ical properties involved in the selection of materials, expanding
prior work that trained NNs directly on material properties
[26,72]. Moreover, by mapping relevant material properties of the
material library of the training data onto an Ashby chart, clustering
the material properties on the chart may enable a more flexible
material selection method.

5.2.2 Graph Predictions and Similarity Search on Computer-
Aided Design Models. We envision the potential expansion of
our work in producing diverse predictions for CAD automation
that are not limited to material selection. Specifically, we seek to
incorporate graph edge prediction and global context prediction
functionalities by varying our current learning architecture. For
graph edge prediction task, we aim to support the user-design
process of organizing and correlating assembly bodies by providing
insights into their hierarchical and relational information through

Fig. 7 Qualitative comparison of material prediction results for selected assemblies
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representation learning based on their properties and that of the
assembly. For global context prediction, we aim to provide users
with an informative overview of the entire assembly design
through representation learning tailored to the global graph features
shared across individual bodies. Furthermore, the feature embed-
ding of the entire assembly graph representation encoded with
assembly-level topology and body-level geometrical information
can be used with unsupervised learning methods, such as high-
dimensional clustering, to enable similarity search on CAD
models with structural and contextual awareness. One application
scenario would be a post-design recommendation, in which we
retrieve, based on similarity search results, past CAD designs that
are similar to the newly produced user design, which may serve
as sanity checks or baselines for the designer to reference. While
the current solution only considered GraphSAGE, GAT [73], and
GIN as the building layers of the graph encoder, we envision that
additional GNN layer types provided by the DGL library, such as
RelGraphConv and CFConv, can be incorporated in future work,
provided the flexibility of the model architecture. Furthermore,
we plan to seek further collaboration and a more diverse design
repository access to apply our HG-CAD architecture. We believe

that our proposed architecture is flexible and competent enough
to handle a wide range of use cases and anticipate that it may be
applicable to high-value components and assemblies, satisfying
the needs of broader users.

5.2.3 A User-Guided Active Learning Process. We want to
overcome the limitations of learning solely from existing designs
and would want to preserve the space for creativity by prompting
a user-guided learning process in future works. Specifically, we
envision an active learning process for the single-node prediction
task, in which the model not only provides a single-shot prediction
for the user-input design based on its learned knowledge from exist-
ing designs but also actively adjusts its weights and parameters as
the user introduces new ground-truth information to existing
bodies or even adding new bodies to the design. Another possible
future direction to bring the user into the learning loop is to allow
post-prediction feedback and adjustments. In the current iteration
of the project, we evaluated the efficacy of the human labelers by
collecting their feedback on the challenges during manual predic-
tion, their confidence in their results, and how they think the
entire experimental procedure can be improved. From the collective

Fig. 8 Convergence of HG-CAD
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feedback, we found that the major challenge that our human sub-
jects encountered during their predictive labeling process derives
from a lack of global context, which confounds their judgement
on bodies of similar geometry. We hope this piece of information
can demonstrate how the labeling of assembly part information
can be hard to evaluate, thus highlighting our work’s goal of auto-
mating the process by leveraging machine learning’s capability of
capturing diverse and latent representations from large repositories
of past data to generalize better than human subjects. To provide
more information that can bring the user into the loop, after display-
ing the top predicted material categories along with their corre-
sponding confidence scores, we prompt the user with several
questions, such as the requirement for the target assembly body’s
weight, volume, and cost, and adjust our predictions or re-ran the
inference step based on the newly introduced information. This
should effectively narrow the search space and thus predict a
scope tailored to the user’s specific needs.

6 Conclusion
In this paper, we propose HG-CAD, a unified architecture based

on a hierarchical graph representation that enables intelligent
computer-aided design by predicting the material category of
bodies in design assemblies through joint learning of geometry
and topology from both body-level and assembly-level scales in
an end-to-end procedure, and with contextual awareness enabled
through batch randomized node masking. Furthermore, we
present a systematic workflow for the automated feature extraction,
encoding, and graph representation generation of CAD models
compatible with the predominant and scalable Fusion 360 Gallery
Assembly Dataset.
We compare our proposed model with three state-of-the-art

learning-based models and a human baseline for the experimental
evaluation. Specifically, we formulate the body-level material pre-
diction task as a node classification task on graphs, where we ran-
domly generate the batch-level Boolean indicator masks to allow
the network to make predictions on individual target nodes while
referencing the ground-truth information from topologically neigh-
boring nodes. Quantitative results demonstrated the effectiveness
of the proposed methodology of representing CAD models as hier-
archical graphs to enable joint learning of body-level geometry
and assembly-level topology with contextual awareness in material
prediction. Qualitative comparison using visualized predictions
also reflected the potential of our proposed model in capturing
and utilizing the similarity in geometry in conjunction with the
topological symmetrical characteristics, showing promise in sup-
porting human-in-the-loop design automation applications. Speci-
fically, we believe that the proposed method’s capacity to
accommodate large-scale databases and flexibility in incorporating
the designer’s knowledge can be used to create a recommenda-
tion system for users by learning best practices from existing
designs. Furthermore, the architecture may serve as a baseline or
foundation for future works leveraging graph neural networks
for design automation.
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Nomenclature
AI = artificial intelligence

ASME = American Society of Mechanical Engineers
AIEDAM = artificial intelligence for engineering design, analysis,

and manufacturing
CC = global clustering coefficient
CIE = computers in engineering
CPL = characteristic path length

CC-WS = Watts-Strogatz local clustering coefficient
CPLRG = characteristic path length of the equivalent random

graph
DTM = design theory and methodology
DP = design parameter
FR = functional requirement

GED = graph edit distance
IFIP = International Federation for Information Processing
ME = mechanical engineering
SWI = small-world index
TRL = technology readiness levels
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