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Abstract—World-building, the process of developing both the
narrative and physical world of a game, plays a vital role in the
game’s experience. Critically-acclaimed independent and AAA
video games are praised for strong world-building, with game
maps that masterfully intertwine with and elevate the narrative,
captivating players and leaving a lasting impression. However,
designing game maps that support a desired narrative is chal-
lenging, as it requires satisfying complex constraints from various
considerations. Most existing map generation methods focus on
considerations about gameplay mechanics or map topography,
while the need to support the story is typically neglected. As a
result, extensive manual adjustment is still required to design
a game world that facilitates particular stories. In this work,
we approach this problem by introducing an extra layer of plot
facility layout design that is independent of the underlying map
generation method in a world-building pipeline.

Concretely, we define (plot) facility layout tasks as the tasks of
assigning concrete locations on a game map to abstract locations
mentioned in a given story (plot facilities), following spatial
constraints derived from the story. We present two methods
for solving these tasks automatically: an evolutionary compu-
tation based approach through Covariance Matrix Adaptation
Evolution Strategy (CMA-ES), and a Reinforcement Learning
(RL) based approach. We develop a method of generating
datasets of facility layout tasks, create a gym-like environment for
experimenting with and evaluating different methods, and further
analyze the two methods with comprehensive experiments, aiming
to provide insights for solving facility layout tasks.

Index Terms—World Building, Procedural Content Genera-
tion, Game Narrative, Reinforcement Learning, CMA-ES

I. INTRODUCTION

Landscapes in digital games serve as more than just scenic
backdrops; they interact intimately with the unfolding narra-
tive, defining and shaping the player’s experience. Arming de-
signers with tools considering narrative in map design, allows
them to create more cohesive and immersive games. However,
designing game maps is difficult, as it requires designers to
consider varied qualities such as realistic topography [1], [2]
and game playability [3] at the same time. Designing a map
that supports a given story adds more constraints, making the
problem even more challenging.

While the need to support an underlying story is typically
neglected in most existing map generation methods, some
efforts have been made to develop the story first, then to codify
it as plot points and graphs so that maps can be generated
based on their relations [4], [5]. However, as Dormans and
Bakkes [6] pointed out, the principles that govern the design

of the spatial and the narrative side of the game are different,
and thus these two processes should be independent. Methods
for generating game maps from stories can appear artificially
contrived to fit a story, and it is not straightforward to combine
these methods with those that also take into account game
design and geographical considerations. As a result, designing
a game world that facilitates a story requires extensive manual
modification; and as the number of constraints scale, the
challenge of designing a map that satisfies all of the constraints
of the story can become intractable, if not impossible, for a
designer to do by hand [7].

We approach this problem by introducing an extra layer of
plot facility layout design that is independent to the underlying
map generation method in a world-building pipeline.

Our work is inspired by the philosophy behind the work
from Dormans and Bakkes [6], which distinguishes the ab-
stract space defined by the story (referred to as missions)
and the concrete space defined by the actual geometric layout
of a game map. The story is accommodated by mapping the
former into the latter. While Dormans and Bakkes [6] focus
on action adventure games with discrete “scenes” connected
by “passages”, we impose very little assumption on methods
used for story and map generation, and in particular target
workflows for modern open world games.

We introduce the concept of plot facilities, which are
abstract locations mentioned in the given story. A set of
constraints are derived from the story in terms of the spa-
tial relationships between plot facilities and elements in the
underlying map. Given an underlying map, we arrange the
layout of the plot facilities on top of the map to satisfy
the constraints. Our method is compatible with any map
generation technique in the sense that the underlying map
can be hand-crafted, procedurally generated, or even from a
Geographic Information System (GIS) such as Google Maps.

Figure 1 illustrates the world building approach and plot fa-
cility design task that is the focus of the work. We demonstrate
our technique with a concrete pipeline using a procedural map
generator and story constraints extracted from a textual story
description with a large language model.

We consider two different representations of the underly-
ing map: 1) a set of 2D polygons with precise geometric
specifications, and 2) a pixel-based 2D image. We present
two approaches to automatic plot facility layout design: an
evolutionary computation (EC) based approach through Co-
variance Matrix Adaptation Evolution Strategy (CMA-ES)979-8-3503-5067-8/24/$31.00 ©2024 IEEE



Fig. 1. Accommodating a story on a map with a plot facility layout design process

for a polygon-based map representation and a Reinforcement
Learning (RL) based approach for maps as 2D images. We
present baseline results for the two approaches. With extensive
quantitative and qualitative studies, we show that the EC based
approach can rapidly provide accurate solutions for tasks with
a practical scale, while the RL based approach has the potential
to better support human-in-the-loop map design workflows.

The paper also presents a dataset of facility layout tasks
and a Gym-like environment to evaluate different methods and
train the RL models. The dataset contains 10, 000 plot facility
layout tasks of different scales, involving 12 types of spatial
constraints and maximum 60 plot facilities each task, based
on a set of procedurally generated terrain maps.1

In summary, the paper’s contribution is threefold:
• We propose plot facility layout design as a novel approach

to address the problem of supporting stories with game
maps, which is compatible with most story and map
generation methods.

• We provide a dataset of plot facility layout tasks and a
Gym-like environment to experiment with and evaluate
different methods for solving the task.

• We provide baseline results on a CMA-ES based method,
and an RL approach for solving plot facility layout tasks,
with discussions on their strengths and weaknesses.

II. RELATED WORK

a) Story and Game Map Generation: Though inter-
twined, the generation of stories and maps are typically
investigated in isolation. A few notable exceptions do tackle
them as a single system. Hartsook et al. [5] proposed a story-
driven map generation method where each event in the plot
is associated with a location of a certain environment (e.g.,
castle, forest, etc.) and a linear plot line is translated to a
constraint composed of a sequence of environments. Map
generation is formulated as an optimization problem finding a
topological structure of the map balancing requirements from
a realistic game world and player preferences, subject to plot
constraints. Valls-Vargas et al. [4] present a procedural method
that generates a story and a map facilitating the story at the

1Our code and dataset are publiclly available at: https://github.com/
AutodeskAILab/PlotMap.

same time. The problem is formulated as optimization of the
topological structure of the map for both playability, and the
space of possible stories.

Both Hartsook et al. [5] and Valls-Vargas et al. [4] generate
grid-based maps consisting of discrete “scenes” connected by
“passages”. The map structure is widely used in many classic
games such as ROGUE [8] and early ZELDA series [9]. How-
ever, many modern RPG games feature seamless world maps
with continuous terrains and very few geographical barriers for
an immersive open world experience, such as ELDEN RING
[10] and THE LEGEND OF ZELDA: BREATH OF THE WILD
[11]. Dormans and Bakkes [6] use generative grammar based
methods for both story (mission) generation and map (space)
generation. The story elements are then mapped to spatial
elements using heuristics specific to game genre. Our work
establishes a mapping between narrative and spatial elements,
but with a more general constraint satisfaction process.

b) Procedural Content Generation: Procedural Content
Generation (PCG) has become an essential component in
video games, employed for the algorithmic creation of game
elements such as levels, quests, and characters. The primary
objectives of PCG are to enhance the replayability of games,
reduce the burden on authors, minimize storage requirements,
and achieve specific aesthetics [12], [1], [2], [3]. Game de-
velopers and researchers alike utilize methods from machine
learning, optimization, and constraint-solving to address PCG
problems [13]. The primary aim of this work is to develop
methods for plot facility layout design capable of generalizing
across a wide range of environments and constraints. To
achieve this goal, we employ a PCG approach to generate
a diverse set of maps and constraints as our dataset.

c) Evolutionary Computation for PCG: Evolutionary
computation (EC) reimagines game design challenges as op-
timization problems solved by evolving solutions to fulfill
specific criteria [14]. The flexibility of EC allows for the
creative redefinition of design challenges, unbounded by the
constraints of precise problem formulations – for example, by
redefining Mario levels as musical compositions and evolved
neural networks suggest strategic tile placements [15].

In this work, we employ the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) [16] for solving the plot facil-
ity layout task. CMA-ES is an algorithm designed to solve



complex, non-linear, and non-convex optimization problems,
by evolving a set of solutions, through adjusting a multivariate
normal distribution, defined by mean and covariance, based on
the success of past solutions. This process involves generating
new solutions, evaluating them, and refining the distribution
to improve outcomes. CMA-ES dynamically adjusts its search
strategy, optimizing the balance between broad exploration and
detailed examination of promising areas. It is highlighted for
its efficiency, minimal parameter tuning, robustness against
local optima and noisy evaluations, and suitability for a wide
range of applications. However, its computational and memory
demands increase quadratically with problem dimensionality,
posing challenges for high dimensional (>1000D) problems.

d) RL in Modern Video Games: The popularity of games
in AI research is largely attributed to their usefulness in the
development and benchmarking of Reinforcement Learning
(RL) algorithms [17]–[20]. On the other hand, RL can also
be used as a design tool for modern games, especially for
accessing and testing games. Iskander et al. [21] developed an
RL system to play in an online multiplayer game alongside
human players. The historical actions from the RL agent can
contribute valuable insights into game balance, such as high-
lighting infrequently utilized combinations of actions within
the game’s mechanics. Bergdahl et al. [22] used RL as an
augmenting automated tool to test game exploits and logical
bugs. Chen et al. [23] released a multi-agent RL environment
to study collective intelligence within the context of real-time
strategy game dynamics. To the best of our knowledge, this
is the first instance that uses a learning-based approach to
accommodate stories on game maps.

III. PROBLEM FORMULATION

Put simply, we would like to assign every location men-
tioned in a story to an appropriate location on the game
map (Fig. 2). Inspired by Dormans and Bakkes [6], we
view the story and the geometric layout of a game map as
independent of each other, except that the geometric layout
should accommodate the story. We introduce the notion of plot
facilities: conceptual “locations” mentioned in the story. These
“locations” are abstract in the sense that they don’t correspond
to any concrete geometric locations (yet). For example, the
event “the hero finds an injured dwarf in the forest” happens
at some place. There can be multiple locations on the map
where this “abstract location” can be “instantiated”, as long
as it does not contradict with the story - in this example it
should be inside a forest area.

A set of constraints can be derived from the story for
determining whether a particular layout of plot facilities is
valid. The set of all plot facilities and the constraints form a
conceptual space defined by the story, which is at a higher
abstraction level than a concrete game map. The problem is
then to assign geometric locations on the map to the plot
facilities such that the constraints are satisfied - we call this
problem plot facility layout design. A plot facility layout is
essentially a mapping between the conceptual space defined
by the story and the geometric space defined by the map.

In the following subsections, we describe our methods
for this problem. To demonstrate a concrete map generation
pipeline, in this study we specifically work with terrain maps,
where different regions on the map represent different biomes.

A. Plot Facility Layout Design

We define a (facility layout) task as a tuple

〈F , T , C〉
where

• F is the set of (plot) facilities. Each facility has an
identifier to be referred to by the constraints.

• T is an underlying terrain map.
• C is a set of spatial constraints over facilities in F and

biome types.
An (optimal) solution to a task is an assignment of coordinates
to all the facilities in F , so that a maximum number of the
constraints in C are satisfied considering their relations with
each other and the biomes in T .

In the subsequent sections, we consider two different
representations of the map T : 1) as a set of 2D poly-
gons on the map, each associated with a biome type
(e.g., OCEAN, PLAINS, etc.), or 2) as a 2D image,
with color-coded regions representing biomes. We also con-
sider two different representations of the constraints in C:
1) as relational expressions such as AcrossBiomeFrom
(OCEAN, fordlen_bay, snapfoot_forest), or 2) as natural
language (NL) utterances, such as “Fordlen Bay and Snapfoot
Forest are separated by the ocean.”.

IV. TASK DATASET GENERATION

We generate a dataset of 10,000 facility layout tasks for
training and evaluation. Each task requires arranging the layout
of minimum 10 to maximum 60 plot facilities on top of a
procedurally generated map, w.r.t. a set of maximum 90 spatial
constraints. Maps consist of 9 biome types and the constraints
are generated based on 12 constraint types.

A. Map Generation

We employ a procedural map generation approach adapted
from Patel [24] and its implementation by Dieu et al. [25].
Initially, a grid of Voronoi polygons is created from random
points, followed by Lloyd relaxation to ensure even distri-
bution. Coastline generation uses a flooding simulation to
designate ocean, coast, lake, and land tiles based on water
edge proximity and neighboring tiles. Elevation is determined
by distance from the coast, with a distribution that emphasizes
smoother terrain with fewer high points. Rivers flow from
mountains to the nearest water body, while moisture levels
are influenced by proximity to freshwater sources. Finally, the
biome of each polygon is assigned based on a combination of
moisture and elevation.

To generate a dataset, 100 maps with 1000 polygons each
are produced. These maps are also converted to RGB images,
suitable for input to neural network-based RL agents.



Fig. 2. We derive spatial constraints from a story and layout locations mentioned in the story on a map to satisfy the constraints.

B. Constraint Generation

Facility layout tasks are generated by associating a set of
random constraints to randomly chosen map. Figure 3 lists
the constraint types and their frequency in the dataset. The
constraint types were selected to cover common geometric
relations between points (facilities) and polygons (biomes),
and they are represented as unary, binary and ternary relations.

For each constraint type, we define a heuristic function for
evaluating an existing facility layout w.r.t. any instantiation
of the constraint type. The function returns a real number in
[0.0, 1.0] with 1.0 meaning fully satisfied and 0.0 completely
unsatisfied.2 These functions are used to check if the randomly
generated constraints are satisfied by a random layout and to
compute the objective value or reward. We associate with each
constraint a natural language utterance (e.g., “Fordlen Bay and
Snapfoot Forest are separated by the ocean.”) for training the
RL model. Tasks are then generated following Algorithm 1.
Note that, as the constraints are extracted from an example
layout, they are guaranteed to be solvable.

ALGORITHM 1: Facility Layout Task Generation
Input: A set of map MAP , maximum number of facilities N , a set

of constraint types CT , minimum and maximum number of
constraints M1 and M2

Output: A facility layout task 〈F, T,C〉
1. Randomly sample a map T from MAP ;
2. Randomly assign a location to facilities obj1 . . . objN on the map
T ;

3. For each constraint type in CT , generate all possible instantiations
of it w.r.t. obj1 . . . objN and biome types. Evaluate each of them
against the current map, adding the true ones to a set C′ ;

4. Sample a set of statements from C′ sized between M1 and M2,
obtaining C;

5. For each statement in C, use large language model such as
GPT [26] to rephrase it with a natural language sentence, resulting
in a set of NL utterances CNL;

6. return task 〈{obj1 . . . objN}, T, CNL〉.

V. EVOLUTIONARY COMPUTATION (CMA-ES) APPROACH

When the map is represented as polygons and the constraints
as relational expressions, the facility layout problem can be ap-
proached as a black-box optimization problem where the goal

2E.g., closeTo(x,y) is negatively correlated to the distance between x and
y, and reaches 1 when their distance is less than a certain threshold.

Fig. 3. Constraint types included in the 10, 000-task
dataset (each pi represents a plot facility). A constraint type
ConstraintType(b1, . . . , bm, p1, . . . , pn) is instantiated to become
a constraint by substituting each of b1, . . . , bm with a biome type, and each
of p1, . . . , pm with a plot facility id (m ≥ 0, n ≥ 0).
is to find facility positions, represented by (x, y) coordinates,
to maximize constraint satisfaction. Each coordinate of each
facility is a single dimension of search (e.g., the location of 10
facilities is a 20 dimensional problem). The search is guided
only by feedback from calls to an objective function that tests
the satisfaction of the entire layout. We use a common variant
of CMA-ES, the Increasing Population Size CMA-ES [27]
which restarts with a population size that doubles after each
restart, based on predefined stagnation criteria.

A. Quantitative Evaluation
We evaluate the performance of CMA-ES on task configu-

rations with 10, 30, and 60 facilities, each under conditions of
30, 60, and 90 constraints. For each configuration, we tested
1000 examples generated, as described in Section IV, allowing
us to explore the impact of an increasing number of constraints
on the optimization efficiency of a fixed number of facilities.

The plots in Figure 4 show that CMA-ES performs ex-
tremely well in low-dimensional settings, rapidly finding



Fig. 4. Layout evaluations to reach a level of constraint satisfaction with
10, 30 and 60 facilities, and 30, 60, and 90 constraints to satisfy. Median
satisfaction over 1000 different tuples of terrain and constraints, shaded
regions indicate 1st and 3rd quartiles. Adaptive population sizes and cause
generation times to vary from 0.25 to 0.75 seconds. However, performing a
run with a budget of 20k evaluations consistently takes 2-5 minutes.

nearly perfect solutions even as the number of constraints
grows. However, as the number of facilities grows, the number
of evaluations required to reach a solution increases. The
performance drop due to more constraints is low, highlighting
the benefits of the black-box approach.

VI. A REINFORCEMENT LEARNING APPROACH

Our CMA-ES based approach relies on repeated computa-
tion of the constraint satisfaction degree at solving time, which
is enabled by the polygon-based representation of the maps.
For many use cases, such a polygon-based representation of
the map may not be available, for example when the map
is hand-drawn or a photo of a physical spatial structure.
Furthermore, the constraints may not be characterizable by
closed-form arithmetic expressions. They may be from aes-
thetic considerations or subjective preferences that can only
be statistically captured. For example, a game designer may
want a “balanced” map layout. This motivates us to explore a
learning-based approach for plot facility layout design.

In this section, we present a Reinforcement Learning (RL)
method as a preliminary exploration. We employ a decision-
making agent to optimize facility layout on a 2D pixel map
image, considering the constraints of the story. This approach
eliminates the need for solving-time constraint satisfaction
computation, and allows for constraints to be expressed in
natural language, enhancing the system’s flexibility and appli-
cability to a wider range of design scenarios.

A. RL Formulation

Each plot facility layout task can be viewed as sequentially
moving a set of plot facilities F on a map, thus we define
the plot facility layout design as a sequential Markov decision
process (MDP), with the following elements:

• Each state s ∈ S consists of three modalities: 1) a pixel-
based image representing the map, 2) a real-valued vector

representing essential information of the plot facilities,
and 3) a group of constraints.

• Each action a ∈ A is a 2d vector of real-valued [∆x,∆y]
for one plot facility. In each round, plot facilities are
moved one at a time in a fixed order, with the state and
rewards updated after each movement. We set the range
of ∆x and ∆y to be small steps so that we are simulating
a concurrent movement of the facilities at a macro-level.

• The reward (for each step) rt is +1 when all constraints
are satisfied, and is the average satisfaction score from all
constraints minus 1 when partial constraints are satisfied:

rt =

{
1, if all constraints are satisfied
1
n

∑n
i=1 si − 1, otherwise

where n is the number of constraints and si is the
satisfaction score for each constraint. The satisfaction
score for each type of constraint is within [0, 1] and
defined based on the heuristic functions described in
Section IV-B. The range of the reward rt is [−1, 0]∪{1}.

• The transition function is deterministic, where st+1 =
f(st, at).

• Each episode is terminated when all the constraints are
satisfied or at 200 timesteps.

We train an RL agent to learn an optimal policy πθ in order
to maximize the expected discounted rewards:

max
πθ

Eτ∼πθ

[
T∑
t=0

γtr(st, at)

]
, (1)

where trajectory τ = (s0, a0, s1, a1, ..., sT , aT ), θ is the
parameterization of policy π, and γ is the discounted factor.
Our goal is to train a general RL agent to be able to find
solutions to any arbitrary task.

VII. EXPERIMENTS & ANALYSIS

A. Experiment Setup

Our state space includes 3 types of inputs:
• a map encoded as a (42× 42× 3) RBG image.
• constraints represented by natural language utterances

or relational expressions, depending on the embedding
strategies described in the following paragraph.

• Each plot facility’s information is represented by a vector,
consisting of its position [x, y] on the map, a binary
motion indicator signifying if it is its turn to move or
not, and a unique identifier.

In all of our experiments, we have set a limit of 10 for both
the number of plot facilities and the number of constraints. All
of our policies are trained using Proximal Policy Optimization
(PPO) [28]. To handle the multi-modal observation space, we
employ pre-trained models to independently extract embed-
dings from the map (image) and constraint (natural language)
inputs. These embeddings are subsequently concatenated with
the informational vector and provided as inputs to the policy
network. Specifically, we design two strategies for deriving the
embeddings:



• NL-based: using ResNet [29] for maps and Sentence-
Transformer [30] for the NL representation of constraints.
The state dimensions are 4, 392, consisting of 512 dimen-
sions for map, 40 for plot facilities, and 384 × 10 for
constraints.

• Relation-based: using ResNet for maps, and each con-
straint, as a relational expression, is encoded as a one-
hot vector, representing the constraint type, followed by
three one-hot vectors indicating the specific plot facilities
to instantiate the constraint with. The state dimensions are
1, 782, consisting of 512 dimensions for map, 40 for plot
facilities, and 123× 10 for constraints.

B. Quantitative Evaluation

We examine the performance of our two proposed embed-
ding strategies across four small task sets. For the datasets
comprising 100 tasks, we explore the influence of maps and
constraints on generalization. These results are presented in
Table I.

For each dataset, we evaluate our trained policies under two
conditions: rand init, which refers to evaluating the policies
with the same task sets used for training but under different
initial positions; and rand init + unseen tasks, which reports
the success rates when the policies, each trained on their
respective task set, are tested on 100 unseen tasks (with dif-
ferent maps and constraints). Success is considered only when
all constraints are satisfied. We calculate the success rates
over 1,000 rollouts, with each rollout taking approximately
5 seconds to complete.

Table I shows that both baselines perform exceptionally
well on tackling a single hard task. The success rate for
both baselines decreases as the size of the task set increases,
exhibiting a deficiency in generalization capability.

To investigate further the factors impeding generalization,
we study the influence of maps and constraints by training on
three distinct sets of 100 tasks as depicted in the last three
columns in Table I. The substantial disparity between varying
sets of constraints and one fixed set of constraints indicates
that constraints pose a greater challenge to generalization,
regardless of the encoding method employed.

VIII. QUALITATIVE RESULTS

In this section, we demonstrate a complete pipeline of the
system, and highlight insightful behaviors of the CMA-ES and
RL method through specific examples.

Figure 2 illustrates a complete story-to-facility-layout
pipeline. From the story on the left, 8 plot facilities and 6
constraints are extracted with a pre-trained large language
model.

The map on the right shows the resulting plot facility
layout, along with motion trails indicating traces to the final
locations from rolling out a trained RL model. The RL models
demonstrate interesting cooperative behaviors (Fig. 5).

In Figure 6, we demonstrate the same story accommodated
on 4 different maps. We observe that the same set of plot
facilities can still maintain their relative spatial relations on

Fig. 5. Cooperative behavior to satisfy constraints: Marketown and
Veilstead Kingdom must be across a lake from each other, while Aquafrost
Garrison must be to the south of Marketown. Aquafrost Garrison was
initially to the south of Marketown but as Marketown moves south to be
across the lake from Veilstead Kingdom, Aquafrost Garrison moves even
further south to continue satisfying its south of Marketown constraint.
completely different geometric layouts, which aligns with the
perspective described in [6]: “The same mission (story) can be
mapped to many different spaces, and one space can support
multiple different missions (stories)”. This capability enables
designers to envision various interpretations of unspecified
story details and potential story progressions.

The RL method provides smooth traces from the starting
positions to the final layout, enabling an interactive interface
for adjusting existing layout solutions. In Figure 7 (a), we
show that our RL policies support real-time re-adaptation after
human intervention. Specifically, after we manually change
the location of Marketown to the northeast part of the map,
Veilstead Kingdom and Hearthfire Hold can adjust their
locations to continue to be across the lake from Marketown,
while Aquafrost Garrison stays at the same location, so
all of the constraints are still satisfied. In contrast, Figure 7
(b) shows the the result obtained by CMA-ES, again with a
manual change of the location of Marketown. For the rest
of the facilities, we start with their current location as the
initial guess, and re-run the CME-ES process until reaching
1.0 satisfaction. As can be seen, the configuration of the rest
of the facilities has been drastically changed, with no obvious
connection with the previous layout.

IX. LIMITATION AND FUTURE WORK

The scalability of CMA-ES is limited by the dimensionality
of the problem and the complexity of the objective function.
The quadratic scaling of the size of the covariance matrix
dramatically reduces the speed of CMA-ES with a large
number of parameters, and CMA-ES is not often used in cases
where it exceeds 1000. This translates to 500 locations as
each location is represented by two parameters (x,y). The 2011
release SKYRIM had 6703, the more recent ELDEN RING had
a map twice the size with locations at higher density4. In the

3https://screenrant.com/skyrim-how-many-locations-big-map-size/
4https://screenrant.com/skyrim-map-elden-ring-lands-between-big-size



TABLE I
SUCCESS RATE (%) COMPARISON BETWEEN A RANDOM AGENT AND THE TWO PROPOSED BASELINE METHODS ACROSS TASK SIZES AND CONDITIONS.

EACH BASELINE IS ASSESSED UNDER TWO CONDITIONS: 1) RANDOM INITIALIZATION ON THE SAME TRAINING TASKS, AND 2) RANDOM INITIALIZATION
ON 100 UNSEEN TASKS. FOR THE 100-TASK DATASETS, WE EXAMINE THREE COMBINATIONS OF MAPS AND CONSTRAINTS.

Method Evaluation Condition

Success Rate (%)
1 task 5 tasks 50 tasks 100 tasks

10 maps + 1 map + 100 maps +
100 sets of constrs 100 sets of constrs 1 set of constrs

Random Agent 23.9 30.3 30.5 30.9 34.5 38.0

NL-based rand init 84.1 48.2 38.5 38.4 42.8 79.2
rand init + unseen tasks 34.8 33.3 35.1 38.0 39.9 70.4

Relation-based rand init 100.0 55.1 46.1 38.5 48.1 77.5
rand init + unseen tasks 32.2 29.6 32.7 36.1 40.1 68.9

Fig. 6. Same story accommodated on 3 different maps

truly large scale cases where CMA-ES would be most useful
it is also the least practical.

Our dataset generation procedure resulted in an imbalanced
dataset, as shown in Figure 3, which has led to unexpected
behaviors and failure cases of the trained RL models. For
example, in the dataset there is a significantly higher pro-
portion of AcrossBiomeFrom constraint. This had led to a
strong tendency of the RL model to move facilities to the
edge of the map, since two plot facilities on different edges
of the map are likely to be across several different biomes
from each other, despite human designers may prefer the
facilities to be close to the biome.5 The RL model also tends
to fail to satisfy constraint types with fewer occurrences in the
dataset (such as CloseTo(p1, p2)). The behavior of the CMA-
ES method is not affected by the imbalance of the dataset.
However, it could still produce undesirable maps due to the
inconsistency between the human designer’s interpretation and
the computational implementation of a constraint.

The use of hand-crafted objective functions present chal-
lenges in both accurately reflecting the preferences of human
designers and providing the right signal for training. A promis-
ing solution for better understanding the kinds of solutions
which designers prefer is to adopt a statistically trained pref-
erence model such as used in Reinforcement Learning from

5For example, “A and B are across a lake” generally implies that A and B
are on the shore of the lake.

Human Preference, which offers potentially more accurate
reflections of human intent [31]. Moreover, we considered the
satisfaction of all constraints as the benchmark for successful
task resolution. In practice, a suboptimal solution that satisfies
most of the constraints might be acceptable, and situations
where the constraints are unsatisfiable are completely possible.
In these cases knowledge of designer preferences, or a mixed-
initiative approach [32]–[34] which allowed editing of the
map, would allow desirable solutions to be found.

The formulation, scalability, and embedding strategies of
the RL approach all presented challenges. Employing a single
RL agent to manage all global information and plot facilities
is a bottleneck, hindering performance in larger settings. A
distributed RL model, where each facility operates as an
independent agent could allow the system to better scale.
Achieving a high level of generality within the RL model,
akin to adapting to various game levels or rules, poses a
significant challenge. Drawing parallels with RL applications
in gaming, where agents must learn to generalize to varied
conditions, a curriculum learning approach [35] could offer a
solution by dynamically generating maps and constraints while
progressively increasing scenario complexity and diversity,
thereby fostering the model’s generalization capabilities.

X. CONCLUSION

In this work we introduced new methods to support stories
with game maps through an automated plot facility layout



(a) (b)
Fig. 7. Plot facility re-adaptation after the user moves Marketown to a
different location (a) with RL, and (b) with CMA-ES. (a) can be seen as
an adjustment of the previous layout while (b) changes into a completely
different layout.

design process. We demonstrated that this approach allows us
to utilize existing story and map generation techniques, and
visualize the spatial implications of a story and the narrative
potential of a map. We present two methods for solving plot
facility layout tasks: an EC based approach through CMA-ES,
and an RL based approach, suitable for different representa-
tions of the underlying maps. With extensive quantitative and
qualitative studies, we show that the EC based approach can
rapidly provide accurate solutions for tasks with a practical
scale, while the RL based approach has the potential to
better support human-in-the-loop map design workflows. The
concept of plot facility layout design has potential in many
game design applications, such as map design, playtime quest
generation/adaptation and story debugging; but also potential
applications in other domains involving spatial layouts subject
to constraints, such as the design of large office buildings or
manufacturing plants.
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