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A B S T R A C T

We introduce a hyperreduced reduced basis element method for model reduction of param-
eterized, component-based systems in continuum mechanics governed by nonlinear partial
differential equations. In the offline phase, the method constructs, through a component-wise
empirical training, a library of archetype components defined by a component-wise reduced
basis and hyperreduced quadrature rules with varying hyperreduction fidelities. In the online
phase, the method applies an online adaptive scheme informed by the Brezzi–Rappaz–Raviart
theorem to select an appropriate hyperreduction fidelity for each component to meet the user-
prescribed error tolerance at the system level. The method accommodates the rapid construction
of hyperreduced models for large-scale component-based nonlinear systems and enables model
reduction of problems with many continuous and topology-varying parameters. The efficacy of
the method is demonstrated on a two-dimensional nonlinear thermal fin system that comprises
up to 225 components and 68 independent parameters.

1. Introduction

Many-query problems, which necessitate repeatedly solving parameterized partial differential equations (PDEs), arise commonly
in various fields of computational science such as design optimization, uncertainty quantification, and control. For problems where
the solution manifold is well approximated in a low-dimensional linear space, the reduced basis (RB) methods provide an effective
approach to rapidly and reliably approximate the PDE solution for many different parameter values [1–4]. RB methods achieve
efficiency by separating the computation into offline (training) and online (deployment) phases. The former typically involves
solutions of the high-fidelity problem (e.g., using finite element (FE) methods) for many training parameter values to generate
solution snapshots, the construction of an RB for the solution space, and, for nonlinear PDEs, hyperreduction [1,3,5]. Consequently,
the offline phase is computationally demanding. Nonetheless, this initial high computational cost is warranted by the significant
computational savings realized in the subsequent online phase, where the reduced problem is solved numerous times in the intended
many-query application.

Despite their effectiveness, the applicability of standard (i.e., monodomain or single-domain) parametric RB methods is limited
to the particular problem with continuous parametric variations for which the training is performed. For instance, even a slight
topological change in the domain can render the trained reduced model inapplicable. In principle, a separate reduced model could
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be trained for each topological configuration; however, in practice, such retraining, at best, diminishes the utility of the reduced
model and, at worst, is computationally intractable, especially for large-scale engineering systems that can take on many different
topological configurations. Even when only parametric (and no topological) variations are considered, the standard RB methods can
be restricted to problems with a small number of parameters due to the high training cost of exploring a high-dimensional space.

To mitigate the aforementioned challenges, a variant of RB methods, called component-based or multidomain RB methods, have
been developed [6–8]. The methods exploit the fact that many engineering structures—such as heat-exchangers, lattice structures,
mechanical multi-component assemblies—consist of a large number of identical or similar components. The key ingredient of
component-based RB methods is component-based training during the offline phase, whereby a library of interoperable archetype
components and their associated local RB is developed. Then, given a particular topological configuration in the online phase, copies
of the archetype components in the library are instantiated, and a global RB model for the whole system is formed by connecting
the preconstructed local reduced models through their respective ports.

Hitherto, several different variants of component-based RB methods have been developed. The reduced basis element (RBE)
method [8–10] combines the ideas of domain-decomposition and RB methods. The method uses Lagrange multipliers to couple
local, subdomain-wise reduced models in the online phase to form a global reduced model. The static condensation RBE (SCRBE)
method [11,12] builds on the component mode synthesis [6,7] and the RB methods. The method decomposes the degrees of freedom
(DoF) in each component into port and bubble (interior) DoF. It then uses static condensation [13] to form a Schur complement
system with only port DoF, and applies RB approximation in each component to reduce the computational cost of static condensation
and to account for parametric variations. The port-reduced SCRBE method [14–16] uses port-reduction techniques to further reduce
the size of the Schur complement system and hence the computational cost. This is achieved by approximating the solution on global
ports through the application of RB methods to port modes. SCRBE methods bear a close resemblance to multiscale RB methods [17–
22], which are applicable to structures composed of smaller-scale components with less heterogeneity relative to those in structures
targeted for the SCRBE method.

Component-based RB methods have been initially developed for linear or polynomial nonlinear problems with affine parameter
dependence, which facilitate offline–online computational decomposition (without hyperreduction). Recently, these methods have
been extended to general nonlinear and nonaffine problems. Methods for nonlinear problems can be broadly categorized into two
groups based on the locality of nonlinearity. The first class of methods are designed for problems where the nonlinearity can be
localized to small regions. Beiges et al. [23] decompose the physical domain and use a hybrid full-order/reduced-order model
approach in the online phase to handle parameter configurations absent in the offline phase. Similarly, Ballani et al. [24] decompose
the physical domain into linear and nonlinear regions and apply the SCRBE method in the former part and high-fidelity model in
the latter. Zhang et al. [25] apply the same decomposition idea, but use Gaussian processes regression in nonlinear regions to
construct a surrogate model. By construction, this class of methods is specialized for localizable nonlinearities and cannot treat
globally nonlinear systems.

The second class of methods is designed for problems that exhibit nonlinearity everywhere in the domain. Hoang et al. [26]
develop a domain-decomposition least-squares Petrov–Galerkin (DD-LSPG) method. This method constructs a separate reduced space
for each subdomain and enforces interface continuity between the subdomains using a set of compatibility constraints in the LSPG
method. Iollo et al. [27] develop a component-based model reduction formulation for parameterized nonlinear elliptic PDEs that uses
overlapping subdomains and an optimization-based reformulation. Smetana and Taddei [28] develop a multidomain RB method that
uses the partition-of-unity concept and apply it to a two-dimensional nonlinear diffusion problem. Diaz et al. [29] integrate nonlinear
approximation spaces, created through autoencoders, with domain-decomposition to facilitate reduced-order modeling of problems
with slowly decaying Kolmogorov 𝑛-width. These methods for globally nonlinear problems, however, do not yet match the versatility
and reliability offered by component-based RB methods for linear problems. First, the majority of these works consider multidomain
systems that result from a decomposition of the global system into partitions, and not interchangeable physical components in the
sense of those in component-based RB methods for linear problems. Second, they do not provide a mechanism for quantitatively
controlling the hyperreduction error at the system level during the online phase.

In this work, we propose a model reduction method that (i) can treat global nonlinearities, (ii) incorporates online-interchangeable
physical components to provide topological and parametric online flexibility, and (iii) provides quantitative control of hyperreduc-
tion error. The contributions of the present work are fivefold:

1. We develop a hyperreduced RBE (HRBE) method, which (i) uses a library of archetype components to provide online
topological and parametric flexibility of component-based RB methods and (ii) can handle general parameterized nonlinear
PDEs that exhibit global nonlinearities.

2. We extend the empirical quadrature procedure (EQP) [30,31] to component-wise offline training to enable a systematic
construction of a library of hyperreduced components, each of which meets the specified residual and Jacobian tolerance.

3. We appeal to the Brezzi–Rappaz–Raviart (BRR) theorem [32] to develop an actionable solution error estimate for component-
based nonlinear systems, which relates component-wise residuals and Jacobians due to hyperreduction to system-level
solution error.

4. We develop an adaptive procedure, informed by the BRR error estimate, to construct a hyperreduced system from a library
of hyperreduced components, such that the hyperreduction error in the online-assembled system meets the user-prescribed
error tolerance in a solution norm for any topological and parametric configuration.

5. We demonstrate the efficacy of the proposed HRBE method using a nonlinear thermal fin system that comprises up to 225
2

instantiated components and 68 independent parameters.
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Fig. 1. (a) Top: an archetype component with two local ports and ̂1 = {1, 2}, Bottom: an archetype component with three local ports and ̂2 = {1, 2, 3}; (b) A
system with 𝑁comp = 3 instantiated components and 𝑁port = 5 global ports. In this system, 𝑀(1) = 1̂, 𝑀(2) = 2̂, 𝑀(3) = 1̂, and  = {1,… , 5}. Also, 𝛺1 = 1(𝛺𝑀(1);𝜇1),

2 = 2(𝛺𝑀(2);𝜇2), 𝛺3 = 3(𝛺𝑀(3);𝜇3), 𝛤1 = 1(�̂�𝑀(1),1;𝜇1), 𝛤2 = 1(�̂�𝑀(1),2;𝜇1) = 2(�̂�𝑀(2),2;𝜇2), 𝛤3 = 2(�̂�𝑀(2),3;𝜇2), 𝛤4 = 2(�̂�𝑀(2),1;𝜇2) = 3(�̂�𝑀(3),1;𝜇3), and
5 = 3(�̂�𝑀(3),2;𝜇3).

The remainder of the paper is organized as follows. Section 2 presents the general form of the model problem considered in this
tudy. Section 3 introduces the HRBE method, providing the bubble–port decomposition, RB approximation, and hyperreduced RB
pproximation. Section 4 introduces the component-based training procedure designed for RB construction and hyperreduction of
he archetype components in the library. Section 5 describes the computational procedures of offline and online phases. Section 6
resents numerical results that validate and demonstrate the efficacy of the HRBE method. Finally, we conclude with a summary
f the work and potential considerations for future work.

. Parameterized nonlinear PDE model problem

As a prelude to developing our HRBE method, in this section, we introduce the general form of the considered parameterized
onlinear PDEs. We present both the physical and reference domain formulations, the latter of which is crucial to treat parameterized
eometries using the HRBE method.

.1. Exact problem formulation

We first introduce geometric and topological entities associated with archetype components. We define ̂ as a library of 𝑁arch
arameterized archetype components. For each archetype component 𝑐 ∈ ̂, we introduce 𝛺𝑐 ⊂ R𝑑 , ̂𝑐 ⊂ R𝑛𝑐 , and 𝜇𝑐 ∈ ̂𝑐 as,
espectively, its bounded 𝑑-dimensional reference spatial domain, bounded 𝑛𝑐 -dimensional parameter domain, and 𝑛𝑐 -dimensional
arameter tuple specifying its reference parameter values. Each archetype component 𝑐 has 𝑛𝛾𝑐 disjoint local ports whose domains
re �̂�𝑐,𝑝 ⊆ 𝜕𝛺𝑐 , 𝑝 ∈ 𝑐 ≡ {1,… , 𝑛𝛾𝑐}, where 𝜕𝛺𝑐 is the boundary of 𝛺𝑐 . We assume the boundary of all components are Lipschitz
ontinuous and all ports of an archetype component are mutually separated by a boundary surface. Fig. 1(a) shows these definitions
or two archetype components.

We next introduce geometric and topological entities associated with an assembled system. We define  as a set of 𝑁comp
nstantiated components composing a system. Each instantiated component is generated from an archetype component in the library
hrough a (parameterized) geometric mapping. The components in the system are connected together through their local ports,
hereby creating 𝑁port global ports. The geometric mappings must guarantee compatibility of the ports. We assume a global port can
e shared by at most two instantiated components. A local port residing on the system boundary also forms a global port, where
he essential boundary conditions at the system level are imposed. We introduce 𝛺𝑐 ⊂ R𝑑 as the physical domain of the instantiated
omponent 𝑐 ∈ , and 𝛤𝑝, 𝑝 ∈  ≡ {1,… , 𝑁port}, as the physical domain of the 𝑝-th global port in the system. We introduce, for each
nstantiated component 𝑐, the parameter tuple 𝜇𝑐 ∈ 𝑐 ≡ ̂𝑀(𝑐), where 𝑀 ∶  → ̂ is a map from the instantiated components to their
orresponding archetype components. The parameterized geometric mappings relating the archetype and instantiated component
omains are 𝑐 ∶ 𝛺𝑀(𝑐) × 𝑐 → 𝛺𝑐 such that 𝛺𝑐 = 𝑐 (𝛺𝑀(𝑐);𝜇𝑐 ). The physical domain of the 𝑝-th local port of 𝑐 ∈  is given by
𝑐,𝑝 ≡ 𝑐 (�̂�𝑀(𝑐),𝑝;𝜇𝑐 ) ∀𝑝 ∈ 𝑀(𝑐). The mapping 𝑐 (⋅;𝜇𝑐 ) depends only on the geometric parameters in 𝜇𝑐 . Fig. 1(b) shows an example

of a three-component system.
We now define function spaces associated with archetype and instantiated components. For the archetype component 𝑐 ∈ ̂,

we introduce a Hilbert space ̂ ⊂ 𝐻1(𝛺 ) endowed with an inner product (⋅, ⋅) and the associated induced norm ‖ ⋅ ‖ ≡
3

𝑐 𝑐 ̂𝑐 ̂𝑐
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(⋅, ⋅)̂𝑐 , which is equivalent to the 𝐻1(𝛺𝑐 )-norm. For 𝑐 ∈ , we introduce the geometric-parameter-dependent mapped space

𝑐 ≡
{

𝑣 = 𝑣◦−1𝑐 (⋅;𝜇𝑐 )
|

|

|

𝑣 ∈ ̂𝑀(𝑐)

}

and the associated inner product (⋅, ⋅)𝑐 and induced norm ‖ ⋅ ‖𝑐 ≡
√

(⋅, ⋅)𝑐 .
We now present a domain-decomposed formulation of the system-level model problem in terms of its components. We introduce

he system’s physical domain 𝛺 such that 𝛺 = ∪𝑐∈𝛺𝑐 . We also define 𝛤𝐷 and 𝛤𝑁 , respectively, as the nonempty Dirichlet and
eumann boundaries of 𝛺 such that 𝜕𝛺 = 𝛤𝐷∪𝛤𝑁 and 𝛤𝐷∩𝛤𝑁 = ∅. The Dirichlet boundary is composed of nonshared local ports of

the instantiated components in the system. To simplify the presentation, we assume homogeneous boundary conditions everywhere.
We further introduce the system parameter domain  ≡ ⊕𝑐∈𝑐 and parameter tuple 𝜇 ≡ (𝜇1,… , 𝜇𝑁comp

) ∈ . Additionally, for
each instantiated component 𝑐 ∈ , we introduce the physical-domain residual 𝑅𝑐 ∶ 𝑐 × 𝑐 ×𝑐 → R as

𝑅𝑐 (𝑤, 𝑣;𝜇) = ∫𝛺𝑐
𝑟𝑐 (𝑤, 𝑣; 𝑥, 𝜇) 𝑑𝑥 ∀𝑤, 𝑣 ∈ 𝑐 , ∀𝜇 ∈ 𝑐 ,

where 𝑟𝑐 ∶ 𝑐 ×𝑐 ×𝛺𝑐 ×𝑐 → R is the physical-domain integrand, which is linear in its second argument but is in general nonlinear
in its first argument. The exact nonlinear model problem in its weak form is as follows: given 𝜇 = (𝜇𝑐 )𝑐∈ ∈ , find 𝑢(𝜇) ∈  such
that

𝑅(𝑢(𝜇), 𝑣;𝜇) ≡
∑

𝑐∈
𝑅𝑐

(

𝑢(𝜇)||
|𝛺𝑐

, 𝑣||
|𝛺𝑐

;𝜇𝑐

)

= 0 ∀𝑣 ∈  , (1)

where  =
{

𝑣 ∈ 𝐻1(𝛺)||
|

𝑣|𝛤𝐷 = 0
}

. Problems that involve boundary integrals due to nonhomogeneous boundary conditions can be
readily treated with minor modifications. We assume the problem is well-posed for all 𝜇 ∈ . Given the solution field 𝑢(𝜇) ∈  , we
evaluate a scalar output (i.e., quantity of interest) 𝐹 (𝑢(𝜇);𝜇) ∈ R at the system level, where

𝐹 (𝑤;𝜇) =
∑

𝑐∈
𝐹𝑐 (𝑤

|

|

|𝛺𝑐
;𝜇𝑐 ) ∀𝑤 ∈  ,∀𝜇 ∈ ;

here, 𝐹𝑐 ∶ 𝑐 ×𝑐 → R is the physical-domain output functional for the instantiated component 𝑐 ∈  given by

𝐹𝑐 (𝑤;𝜇) = ∫𝛺𝑐
𝑓𝑐 (𝑤; 𝑥, 𝜇) 𝑑𝑥 ∀𝑤 ∈ 𝑐 , ∀𝜇 ∈ 𝑐 ,

where 𝑓𝑐 ∶ 𝑐 ×𝛺𝑐 ×𝑐 → R is the physical-domain integrand.
To handle parameterized geometries using the HRBE method presented in the next section, we need to formulate the system-level

residual and output forms in the reference-domain of the components. As such, for each archetype component 𝑐 ∈ ̂, we introduce
reference-domain residual 𝑅𝑐 ∶ ̂𝑐 × ̂𝑐 × ̂𝑐 → R and output functional 𝐹𝑐 ∶ ̂𝑐 × ̂𝑐 → R given by

𝑅𝑐 (𝑤, 𝑣;𝜇) = ∫𝛺𝑐
�̂�𝑐 (𝑤, 𝑣; 𝑥, 𝜇) 𝑑𝑥 ∀𝑤, 𝑣 ∈ ̂𝑐 , ∀𝜇 ∈ ̂𝑐 ,

𝐹𝑐 (𝑤;𝜇) = ∫𝛺𝑐
𝑓𝑐 (𝑤; 𝑥, 𝜇) 𝑑𝑥 ∀𝑤 ∈ ̂𝑐 , ∀𝜇 ∈ ̂𝑐 ,

where �̂�𝑐 ∶ ̂𝑐 × ̂𝑐 ×𝛺𝑐 × ̂𝑐 → R and 𝑓𝑐 ∶ ̂𝑐 ×𝛺𝑐 × ̂𝑐 → R are the reference-domain integrands that satisfy

𝑟𝑐 (𝑤, 𝑣; 𝑥, 𝜇𝑐 ) = �̂�𝑀(𝑐)(𝑤◦𝑐 (⋅;𝜇𝑐 ), 𝑣◦𝑐 (⋅;𝜇𝑐 );−1𝑐 (𝑥;𝜇𝑐 ), 𝜇𝑐 )
|

|

|

𝑐 (−1𝑐 (𝑥;𝜇𝑐 );𝜇𝑐 )
|

|

|

−1
,

𝑓𝑐 (𝑤; 𝑥, 𝜇𝑐 ) = 𝑓𝑀(𝑐)(𝑤◦𝑐 (⋅;𝜇𝑐 );−1𝑐 (𝑥;𝜇𝑐 ), 𝜇𝑐 )
|

|

|

𝑐 (−1𝑐 (𝑥;𝜇𝑐 );𝜇𝑐 )
|

|

|

−1

for all 𝑐 ∈ , 𝑤, 𝑣 ∈ 𝑐 , 𝑥 ∈ 𝛺𝑐 , and 𝜇𝑐 ∈ 𝑐 ; here, 𝑐 (⋅;𝜇𝑐 ) is the Jacobian of 𝑐 (⋅;𝜇𝑐 ), and |

|

|

𝑐 (⋅;𝜇𝑐 )
|

|

|

is its determinant. We can now
express the system-level residual and output forms in terms of the archetype component reference-domain forms as

𝑅(𝑤, 𝑣;𝜇) =
∑

𝑐∈
𝑅𝑀(𝑐)

(

𝑤||
|𝛺𝑐

◦𝑐 (⋅;𝜇𝑐 ), 𝑣
|

|

|𝛺𝑐
◦𝑐 (⋅;𝜇𝑐 );𝜇𝑐

)

,

𝐹 (𝑤;𝜇) =
∑

𝑐∈
𝐹𝑀(𝑐)(𝑤

|

|

|𝛺𝑐
◦𝑐 (⋅;𝜇𝑐 );𝜇𝑐 )

for any 𝑤, 𝑣 ∈  and 𝜇 ∈ .

2.2. Truth problem formulation

As is often the case, the exact problem (1) cannot be solved analytically. Instead, we appeal to the truth problem associated with
a FE method to approximate the solution. This solution is taken as the computable ground truth. We present the truth problem
formulation in terms of bubble and port functions to facilitate the development of the HRBE method described in Section 3.

2.2.1. Bubble–port decomposition of functions
We first define approximation spaces associated with archetype components. For each archetype component 𝑐 ∈ ̂, we introduce

an 𝑐 -dimensional truth FE space ̂ℎ,𝑐 ≡
{

𝑣 ∈ ̂𝑐
|

|

|

𝑣|𝜅 ∈ P𝑛(𝜅) ∀𝜅 ∈ ℎ,𝑐
}

⊂ ̂𝑐 , where ℎ,𝑐 is a tessellation of 𝛺𝑐 formed by a set of
𝑛

4

nonoverlapping, conforming elements {𝜅}, and P (𝜅) is the space of degree-𝑛 polynomials over each element 𝜅. We also introduce
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{

̂b
ℎ,𝑐 ≡

{

𝑣 ∈ ̂ℎ,𝑐
|

|

|

𝑣||
|�̂�𝑐,𝑝

= 0, ∀𝑝 ∈ 𝑐
}

as the  b
𝑐 -dimensional bubble FE space of the archetype component 𝑐. We additionally

introduce  𝑝
𝑐 -dimensional port FE space ̂𝑝

ℎ,𝑐 of the 𝑝-th port of the archetype component 𝑐 as the restriction of ̂ℎ,𝑐 to the port
domain �̂�𝑐,𝑝; i.e., ̂𝑝

ℎ,𝑐 ≡ ̂ℎ,𝑐 |�̂�𝑐,𝑝 , 𝑝 ∈ 𝑐 . We note that 𝑐 =  b
𝑐 +

∑

𝑝∈𝑐
 𝑝
𝑐 .

We now define basis functions for the ports of each archetype component 𝑐 ∈ ̂. We introduce for the 𝑝-th local port of 𝑐

igenpairs (𝜏𝑝𝑐,𝑖 ∈ ̂𝑝
ℎ,𝑐 , 𝜆

𝑝
𝑐,𝑖 ∈ R)

 𝑝
𝑐

𝑖=1 such that

∫�̂�𝑐,𝑝
∇𝜏𝑝𝑐,𝑖 ⋅ ∇𝑦 𝑑𝑠 = 𝜆𝑝𝑐,𝑖 ∫�̂�𝑐,𝑝

𝜏𝑝𝑐,𝑖 𝑦 𝑑𝑠 ∀𝑦 ∈ ̂𝑝
ℎ,𝑐 ,

‖

‖

‖

𝜏𝑝𝑐,𝑖
‖

‖

‖𝐿2(�̂�𝑐,𝑝)
= 1.

e note that ̂𝑝
ℎ,𝑐 = span{𝜏𝑝𝑐,𝑖}

 𝑝
𝑐

𝑖=1 . We then elliptically lift these basis functions to the interior of 𝑐 to find {�̂�𝑝𝑐,𝑖 ∈ ̂ℎ,𝑐}
 𝑝
𝑐

𝑖=1 by solving

∫𝛺𝑐
∇�̂�𝑝𝑐,𝑖 ⋅ ∇𝑣 𝑑𝑥 = 0 ∀𝑣 ∈ ̂b

ℎ,𝑐 ,

�̂�𝑝𝑐,𝑖 = 𝜏𝑝𝑐,𝑖 on �̂�𝑐,𝑝,

�̂�𝑝𝑐,𝑖 = 0 on �̂�𝑐,𝑝 ′ ∀𝑝 ′ ≠ 𝑝.

e define ̂𝛾ℎ,𝑐 as the  𝛾
𝑐 -dimensional FE space spanned by {{�̂�𝑝𝑐,𝑖}

 𝑝
𝑐

𝑖=1}𝑝∈𝑐 , where  𝛾
𝑐 =

∑

𝑝∈𝑐
 𝑝
𝑐 .

We now present the bubble–port decomposition of functions defined on each instantiated component 𝑐 ∈ . We introduce the
eometric-parameter-dependent mapped full-component, bubble, port(-trace), and port-lifted FE spaces:

ℎ,𝑐 ≡
{

𝑣 = 𝑣◦−1𝑐 (⋅;𝜇𝑐 )
|

|

|

𝑣 ∈ ̂ℎ,𝑀(𝑐)

}

⊂ 𝑐 ,

b
ℎ,𝑐 ≡

{

𝑣 = 𝑣◦−1𝑐 (⋅;𝜇𝑐 )
|

|

|

𝑣 ∈ ̂b
ℎ,𝑀(𝑐)

}

⊂ ℎ,𝑐 ,

𝑝
ℎ,𝑐 ≡

{

𝑣 = 𝑣◦−1𝑐 (⋅;𝜇𝑐 )
|

|

|

𝑣 ∈ ̂𝑝
ℎ,𝑀(𝑐)

}

∀𝑝 ∈ 𝑀(𝑐),

𝛾ℎ,𝑐 ≡
{

𝑣 = 𝑣◦−1𝑐 (⋅;𝜇𝑐 )
|

|

|

𝑣 ∈ ̂𝛾ℎ,𝑀(𝑐)

}

= span
{{

𝜓𝑝𝑐,𝑖 ≡ �̂�𝑝𝑀(𝑐),𝑖◦
−1
𝑐 (⋅;𝜇𝑐 )

} 𝑝
𝑀(𝑐)

𝑖=1

}

𝑝∈𝑀(𝑐)
.

ubsequently, any 𝑣ℎ,𝑐 ∈ ℎ,𝑐 can be decomposed as

𝑣ℎ,𝑐 = 𝑣bℎ,𝑐 + 𝑣
𝛾
ℎ,𝑐 , (2)

where 𝑣bℎ,𝑐 ∈ b
ℎ,𝑐 is the bubble part of 𝑣ℎ,𝑐 and 𝑣𝛾ℎ,𝑐 ∈ 𝛾ℎ,𝑐 is its port part given by

𝑣𝛾ℎ,𝑐 =
∑

𝑝∈𝑀(𝑐)

𝑣𝑝ℎ,𝑐 =
∑

𝑝∈𝑀(𝑐)

 𝑝
𝑀(𝑐)
∑

𝑖=1
𝐯𝑝ℎ,𝑐,𝑖𝜓

𝑝
𝑐,𝑖,

in which {𝐯𝑝ℎ,𝑐,𝑖}
 𝑝
𝑀(𝑐)

𝑖=1 are the generalized coordinates of 𝑣𝑝ℎ,𝑐 ∈ 𝑝ℎ,𝑐 ≡ span
{

𝜓𝑝𝑐,𝑖
} 𝑝

𝑀(𝑐)

𝑖=1
∀𝑐 ∈  and ∀𝑝 ∈ 𝑀(𝑐). (Throughout this work,

we denote the generalized coordinates of any function 𝑦 in an 𝑁-dimensional linear space  with a basis {𝛷𝑖}𝑁𝑖=1 by a boldface
letter 𝐲 such that 𝐲 ≡ [𝐲1,… , 𝐲𝑁 ]𝑇 satisfies 𝑦 = ∑𝑁

𝑖=1 𝐲𝑖𝛷𝑖.)
At the system level, we assume conformity of the local ports connected together. Thus, for the 𝑝-th global port, 𝑝 ∈  , shared

y 𝑙-th port of 𝑐 ∈  and 𝑙′-th port of 𝑐′ ∈ , we have 𝛤𝑝 = 𝛾𝑐,𝑙 = 𝛾𝑐′ ,𝑙′ , ℎ,𝑝 ≡  𝑙
ℎ,𝑐 =  𝑙′

ℎ,𝑐′ , 
𝛤
𝑝 ≡  𝑙

𝑀(𝑐) =  𝑙′
𝑀(𝑐′), and 𝐯𝑙ℎ,𝑐,𝑖 = 𝐯𝑙′ℎ,𝑐′ ,𝑖,

= 1,… , 𝛤
𝑝 .

.2.2. Truth problem statement
We now formulate the truth problem in terms of bubble and port functions. As such, we introduce system’s  b

ℎ -dimensional
ubble,  𝛤

ℎ -dimensional port(-lifted), and ℎ-dimensional FE spaces, respectively, given by b
ℎ ≡ ⊕𝑐∈b

ℎ,𝑐 , 
𝛤
ℎ ≡ ⊕𝑐∈

𝛾
ℎ,𝑐 , and

ℎ ≡
(

b
ℎ ⊕ 𝛤ℎ

)

∩  , where  b
ℎ =

∑

𝑐∈  b
𝑀(𝑐), 

𝛤
ℎ =

∑

𝑝∈  𝛤
𝑝 , and ℎ =  b

ℎ + 𝛤
ℎ . Note that the intersection with  enforces

ssential boundary conditions. We further define (𝑥𝑐,𝑞 , 𝜌𝑐,𝑞)
𝑄𝑐
𝑞=1 ∀𝑐 ∈ ̂ as the truth quadrature rule in the reference domain 𝛺𝑐 of

ach archetype component 𝑐 ∈ ̂. We may now state the truth problem: given 𝜇 = (𝜇𝑐 )𝑐∈ ∈ , find {𝑢bℎ,𝑐 (𝜇) ∈ b
ℎ,𝑐}𝑐∈ and

{𝑢𝑝ℎ,𝑐 (𝜇) ∈ 𝑝ℎ,𝑐}𝑝∈𝑀(𝑐)
}𝑐∈ such that, for all {𝑣bℎ,𝑐 ∈ b

ℎ,𝑐}𝑐∈ and {{𝑣𝑝ℎ,𝑐 ∈ 𝑝ℎ,𝑐}𝑝∈𝑀(𝑐)
}𝑐∈ ,

𝑅ℎ(𝑢ℎ(𝜇), 𝑣ℎ;𝜇) ≡
∑

𝑐∈

𝑄𝑀(𝑐)
∑

𝑞=1
𝜌𝑀(𝑐),𝑞 �̂�𝑀(𝑐)

(

[

𝑢bℎ,𝑐 (𝜇) +
∑

𝑝∈𝑀(𝑐)

𝑢𝑝ℎ,𝑐 (𝜇)
]

◦𝑐 (𝑥𝑀(𝑐),𝑞 ;𝜇𝑐 ),

[

𝑣bℎ,𝑐 +
∑

𝑣𝑝ℎ,𝑐
]

◦𝑐 (𝑥𝑀(𝑐),𝑞 ;𝜇𝑐 ); 𝑥𝑀(𝑐),𝑞 , 𝜇𝑐

)

= 0,

(3)
5

𝑝∈𝑀(𝑐)



Computer Methods in Applied Mechanics and Engineering 431 (2024) 117254M. Ebrahimi and M. Yano
where the system-level solution 𝑢ℎ(𝜇) ∈ ℎ is given by 𝑢ℎ(𝜇) =
∑

𝑐∈

[

𝑢bℎ,𝑐 (𝜇) +
∑

𝑝∈𝑀(𝑐)
𝑢𝑝ℎ,𝑐 (𝜇)

]

. Similarly to the exact problem in (1),
we assume (3) is well-posed for all 𝜇 ∈ . We then evaluate the truth output

𝐹ℎ(𝑢ℎ(𝜇);𝜇) ≡
∑

𝑐∈

𝑄𝑀(𝑐)
∑

𝑞=1
𝜌𝑀(𝑐),𝑞 𝑓𝑀(𝑐)

([

𝑢bℎ,𝑐 (𝜇) +
∑

𝑝∈𝑀(𝑐)

𝑢𝑝ℎ,𝑐 (𝜇)
]

◦𝑐 (𝑥𝑀(𝑐),𝑞 ;𝜇𝑐 ); 𝑥𝑀(𝑐),𝑞 , 𝜇𝑐
)

. (4)

In practice, (3) is solved using Newton’s method. Given the 𝑛-th Newton iterate 𝑢(𝑛)ℎ , the 𝑛 + 1-st iterate is given by 𝑢(𝑛+1)ℎ =
𝑢(𝑛)ℎ − 𝛿𝑢(𝑛)ℎ , where 𝛿𝑢(𝑛)ℎ ∈ ℎ is the Newton update that satisfies

𝑅′
ℎ(𝑢

(𝑛)
ℎ , 𝛿𝑢

(𝑛)
ℎ , 𝑣ℎ;𝜇) = 𝑅ℎ(𝑢

(𝑛)
ℎ , 𝑣ℎ;𝜇) ∀𝑣ℎ ∈ ℎ, (5)

where 𝑅′
ℎ(𝑢

(𝑛)
ℎ , 𝛿𝑢

(𝑛)
ℎ , 𝑣ℎ;𝜇) is the Gâteaux derivative of 𝑅ℎ(⋅, 𝑣ℎ;𝜇) at 𝑢(𝑛)ℎ in the direction of 𝛿𝑢(𝑛)ℎ . We may appeal to (3) to obtain,

∀𝑤ℎ, 𝑧ℎ, 𝑣ℎ ∈ ℎ and ∀𝜇 ∈ ,

𝑅′
ℎ(𝑤ℎ, 𝑧ℎ, 𝑣ℎ;𝜇) =

∑

𝑐∈

𝑄𝑀(𝑐)
∑

𝑞=1
𝜌𝑀(𝑐),𝑞 �̂�

′
𝑀(𝑐)

([

𝑤b
ℎ,𝑐 +

∑

𝑝∈𝑀(𝑐)

𝑤𝑝ℎ,𝑐
]

◦𝑐 (⋅;𝜇𝑐 ),

[

𝑧bℎ,𝑐 +
∑

𝑝∈𝑀(𝑐)

𝑧𝑝ℎ,𝑐
]

◦𝑐 (⋅;𝜇𝑐 ),

[

𝑣bℎ,𝑐 +
∑

𝑝∈𝑀(𝑐)

𝑣𝑝ℎ,𝑐
]

◦𝑐 (⋅;𝜇𝑐 ); 𝑥𝑀(𝑐),𝑞 , 𝜇𝑐
)

,

where �̂� ′𝑐 (𝑤ℎ, 𝑧ℎ, 𝑣ℎ; 𝑥𝑐,𝑞 , 𝜇𝑐 ), 𝑐 ∈ ̂, is the Gâteaux derivative of �̂�𝑐 (⋅, 𝑣ℎ; 𝑥𝑐,𝑞 , 𝜇𝑐 ) at 𝑤ℎ in the direction of 𝑧ℎ.

3. Hyperreduced reduced basis element method

In this section, we present our HRBE method, which uses component-wise RB and hyperreduction (i) to provide an accurate
approximation of the truth problem (3) at a substantially reduced computational cost and (ii) to provide topological and parametric
flexibility to assemble an arbitrary system in the online phase.

3.1. RB problem formulation

We now introduce an RB approximation of the truth problem (3). We first construct an RB space for the bubble space of each
component. To this end, we assume that, for each 𝑐 ∈ , the bubble solution 𝑢bℎ,𝑐 (𝜇) associated with (3) for any 𝜇 ∈  can be
well-approximated in an 𝑁b

𝑀(𝑐) ≪ b
𝑀(𝑐)-dimensional linear space. We then introduce, for each archetype component 𝑐 ∈ ̂, an 𝑁b

𝑐 -

dimensional space ̂b
rb,𝑐 ⊂ ̂b

ℎ,𝑐 spanned by an RB {𝜉b𝑐,𝑖}
𝑁b
𝑐

𝑖=1. (We defer the discussion of the computational procedure to construct RBs to
Section 4; for now, we assume RBs are given.) We further define the 𝑁𝑐 -dimensional space ̂rb,𝑐 ≡ ̂b

rb,𝑐⊕ ̂𝛾ℎ,𝑐 , where 𝑁𝑐 = 𝑁b
𝑐 + 𝛾

𝑐 .

Analogously, for each instantiated component 𝑐 ∈ , we introduce RB spaces b
rb,𝑐 ≡

{

𝑣 = 𝑣◦−1𝑐 (⋅;𝜇𝑐 )
|

|

|

𝑣 ∈ ̂b
rb,𝑀(𝑐)

}

⊂ b
ℎ,𝑐 and

rb,𝑐 ≡ b
rb,𝑐 ⊕ 𝛾ℎ,𝑐 , so that we can express any 𝑣rb,𝑐 ∈ rb,𝑐 as 𝑣rb,𝑐 = 𝑣brb,𝑐 + 𝑣

𝛾
ℎ,𝑐 , where 𝑣brb,𝑐 ∈ b

rb,𝑐 and 𝑣𝛾ℎ,𝑐 ∈ 𝛾ℎ,𝑐 .
We next define the system-level (global) RB space. We first introduce the bubble space for the system as the direct sum of

component RB spaces: i.e., b
rb ≡ ⊕𝑐∈b

rb,𝑐 . We then augment the space with the global port basis and enforce essential boundary
conditions to obtain rb ≡

(

b
rb ⊕ 𝛤ℎ

)

∩  . The dimensions of b
rb and rb are 𝑁b

rb ≡
∑

𝑐∈ 𝑁
b
𝑀(𝑐) and 𝑁rb ≡ 𝑁b

rb + 𝛤
ℎ , respectively.

Since 𝑁b
𝑐 ≪ b

𝑐 ∀𝑐 ∈ ̂, we have 𝑁rb ≪ℎ. We then appeal to Galerkin projection to obtain the RB problem: given 𝜇 = (𝜇𝑐 )𝑐∈ ∈ ,
find {𝑢brb,𝑐 (𝜇) ∈ b

rb,𝑐}𝑐∈ and {{𝑢𝑝ℎ,𝑐 (𝜇) ∈ 𝑝ℎ,𝑐}𝑝∈𝑀(𝑐)
}𝑐∈ such that, for all {𝑣brb,𝑐 ∈ b

rb,𝑐}𝑐∈ and {{𝑣𝑝ℎ,𝑐 ∈ 𝑝ℎ,𝑐}𝑝∈𝑀(𝑐)
}𝑐∈ ,

𝑅rb(𝑢rb(𝜇), 𝑣rb;𝜇) =
∑

𝑐∈

𝑄𝑀(𝑐)
∑

𝑞=1
𝜌𝑀(𝑐),𝑞 �̂�𝑀(𝑐)

(

[

𝑢brb,𝑐 (𝜇) +
∑

𝑝∈𝑀(𝑐)

𝑢𝑝ℎ,𝑐 (𝜇)
]

◦𝑐 (𝑥𝑀(𝑐),𝑞 ;𝜇𝑐 ),

[

𝑣brb,𝑐 +
∑

𝑝∈𝑀(𝑐)

𝑣𝑝ℎ,𝑐
]

◦𝑐 (𝑥𝑀(𝑐),𝑞 ;𝜇𝑐 ); 𝑥𝑀(𝑐),𝑞 , 𝜇𝑐

)

= 0,

(6)

where the system-level solution 𝑢rb(𝜇) ∈ rb is given by 𝑢rb(𝜇) =
∑

𝑐∈

[

𝑢brb,𝑐 (𝜇) +
∑

𝑝∈𝑀(𝑐)
𝑢𝑝ℎ,𝑐 (𝜇)

]

, and evaluate the output
𝐹rb(𝑢rb(𝜇);𝜇). Here, 𝑅rb(𝑤, 𝑣;𝜇) = 𝑅ℎ(𝑤, 𝑣;𝜇) and 𝐹rb(𝑤;𝜇) = 𝐹ℎ(𝑤;𝜇) ∀𝑤, 𝑣 ∈ rb, ∀𝜇 ∈ , and hence the forms are evaluated
using the truth quadrature rule. We again assume the RB problem (6) is well-posed for all 𝜇 ∈ .

Remark 1. In this work, we do not consider port reduction [14–16]. Hence, the number of DoF in the RB system is bounded from
below by the number of port DoF in the truth system, which ultimately limits the dimensionality reduction achieved by the present
formulation, especially for systems with many ports and/or large ports. While recognizing the limitation, we focus on developing
component-wise hyperreduction for this non-port-reduced system in this work and leave port-reduction to future work.
6
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3.2. HRBE problem formulation

The computational cost of solving (6), which uses the truth quadrature rule, depends on the underlying truth FE discretization,
endering the method not online efficient. To remedy this issue, we appeal to hyperreduction techniques. Hyperreduction approaches

in the RB literature fall into two classes. The first class of methods approximates integrands first and then integrates them. These
methods use a number of empirically-derived basis functions to approximate the nonlinear terms in the integrands through a
sparse interpolation/regression scheme and then integrate the approximated integrands. Methods in this class include the gappy
proper orthogonal decomposition (POD) method [33], the empirical interpolation method (EIM) [34,35], the discrete EIM [36], the
first-order EIM [37,38], and the Gauss–Newton approximation tensor method [39]. The second class of hyperreduction methods
directly approximates the integrals in the residual and output forms using a set of empirically-derived sparse element sampling
or quadrature rule. Methods in this class include the optimal cubature method [40], the energy-conserving mesh sampling and
weighting method [41,42], the empirical cubature method [43], and the EQP [30,31]. In the present study, we build on the EQP
and its ability to construct quantitative control of the hyperreduction error in the solution (instead of the residual) and extend this
capability to the component-based context.

The EQP constructs a set of empirical and sparse reduced quadrature (RQ) points and weights that approximate the integrals in
the residual and output forms to a prescribed accuracy. The RQ points are a sparse subset of the truth quadrature points {𝑥𝑐,𝑞}

𝑄𝑐
𝑞=1,

̂ ∈ ̂, with re-weighted quadrature weights. We introduce ( ̃̂𝑥𝑟𝑐,𝑞 ,
̃̂𝜌𝑟𝑐,𝑞)

�̃�𝑟
𝑐

𝑞=1 ⊂ (𝑥𝑐,𝑞 , 𝜌𝑐,𝑞)
𝑄𝑐
𝑞=1 as the residual RQ rule for each archetype

component 𝑐 ∈ ̂, where �̃�𝑟𝑐 ≪ 𝑄𝑐 . We similarly introduce output functional RQ rule, ( ̃̂𝑥𝑓𝑐,𝑞 ,
̃̂𝜌𝑓𝑐,𝑞)

�̃�𝑓
𝑐

𝑞=1 ⊂ (𝑥𝑐,𝑞 , 𝜌𝑐,𝑞)
𝑄𝑐
𝑞=1, 𝑐 ∈ ̂, where

̃𝑓
𝑐 ≪ 𝑄𝑐 . (We defer the discussion of construction of these RQ rules in the offline phase to Section 4; for now, we assume the

ules are given.) Given the RQ rules, the HRBE problem is stated as follows: given 𝜇 = (𝜇𝑐 )𝑐∈ ∈ , find {�̃�brb,𝑐 (𝜇) ∈ b
rb,𝑐}𝑐∈ and

{�̃�𝑝ℎ,𝑐 (𝜇) ∈ 𝑝ℎ,𝑐}𝑝∈𝑀(𝑐)
}𝑐∈ such that, for all {𝑣brb,𝑐 ∈ b

rb,𝑐}𝑐∈ and {{𝑣𝑝ℎ,𝑐 ∈ 𝑝ℎ,𝑐}𝑝∈𝑀(𝑐)
}𝑐∈ ,

𝑅rb(�̃�rb(𝜇), 𝑣rb;𝜇) ≡
∑

𝑐∈

�̃�𝑟𝑀(𝑐)
∑

𝑞=1

̃̂𝜌𝑟𝑀(𝑐),𝑞 �̂�𝑀(𝑐)

(

[

�̃�brb,𝑐 (𝜇) +
∑

𝑝∈𝑀(𝑐)

�̃�𝑝ℎ,𝑐 (𝜇)
]

◦𝑐 ( ̃̂𝑥𝑟𝑀(𝑐),𝑞 ;𝜇𝑐 ),

[

𝑣brb,𝑐 +
∑

𝑝∈𝑀(𝑐)

𝑣𝑝ℎ,𝑐
]

◦𝑐 ( ̃̂𝑥𝑟𝑀(𝑐),𝑞 ;𝜇𝑐 ); ̃̂𝑥
𝑟
𝑀(𝑐),𝑞 , 𝜇𝑐

)

= 0,

(7)

nd evaluate the approximate output

𝐹rb(�̃�rb(𝜇);𝜇) ≡
∑

𝑐∈

�̃�𝑓𝑀(𝑐)
∑

𝑞=1

̃̂𝜌𝑓𝑀(𝑐),𝑞 𝑓𝑀(𝑐)

(

[

�̃�brb,𝑐 (𝜇) +
∑

𝑝∈𝑀(𝑐)

�̃�𝑝ℎ,𝑐 (𝜇)
]

◦𝑐 ( ̃̂𝑥
𝑓
𝑀(𝑐),𝑞 ;𝜇𝑐 );

̃̂𝑥𝑓𝑀(𝑐),𝑞 , 𝜇𝑐

)

. (8)

wing to 𝑁rb ≪ ℎ, �̃�𝑟𝑐 ≪ 𝑄𝑀(𝑐), and �̃�𝑓𝑐 ≪ 𝑄𝑀(𝑐) ∀𝑐 ∈ , solving the hyperreduced RB problem (7) and approximating the
utput (8) can be carried out significantly more efficiently than their corresponding counterparts in the truth problem, (3) and (4),
espectively. Sufficient conditions for the well-posedness of the hyperreduced RB problem (7) will be provided in Proposition 6.

emark 2. For each archetype component, the bubble RB and RQ rules are calculated and stored in the library a priori in the
ffline phase. Therefore, in the online phase, once we determine the connectivity of instantiated components and form a system, we
an rapidly assemble the system’s reduced residual and Jacobian and solve the HRBE system (7) without RB and RQ retraining. In
ther words, the HRBE system results from assembling hyperreduced components trained in the offline phase, and not from applying
yperreduction to an online-assembled RB system, which could not be performed in an online efficient manner.

. Component-wise RB and RQ training

The two primary ingredients of the HRBE method presented in Section 3 are the RB {𝜉b𝑐,𝑖}
𝑁b
𝑐

𝑖=1 of the bubble spaces ̂b
rb,𝑐 and the

Q rules ( ̃̂𝑥𝑟𝑐,𝑞 ,
̃̂𝜌𝑟𝑐,𝑞)

�̃�𝑟
𝑐

𝑞=1 and ( ̃̂𝑥𝑓𝑐,𝑞 ,
̃̂𝜌𝑓𝑐,𝑞)

�̃�𝑓
𝑐

𝑞=1 for all archetype components 𝑐 ∈ ̂. In this section, we outline the procedures to construct
hese essential elements.

.1. Generation of archetype component training solutions

For each archetype component, we use an empirical training procedure to deduce the shape and magnitude of its anticipated
olution and boundary conditions. To this end, we introduce for each archetype component 𝑐 ∈ ̂, a parameter training set
train
𝑐 ≡ {𝜇train𝑐,𝑛 ∈ ̂𝑐}

𝑁 train
𝑐

𝑛=1 with a size of 𝑁 train
𝑐 . For this archetype component, we compose 𝑁sample sample subsystems by connecting it

hrough its 𝑛𝛾𝑐 local ports to other randomly selected components from the library. This component is connected to other components
hrough its local ports with a probability of 𝛽. We then assign random parameter values to each component in the assembled
ubsystems from their respective parameter training sets. We next apply random independent constant Dirichlet boundary conditions,
7

ith uniform density, to all nonshared global ports. We finally solve the truth problem for each subsystem, extract the truth
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Algorithm 1: Generating training data for RB and RQ construction of archetype components.
Input: Number of sample subsystems 𝑁sample; probability of port connection 0 ≤ 𝛽 ≤ 1
Output: The set of snapshot solutions 𝑈 train

ℎ,𝑐 ∀𝑐 ∈ ̂

1 for 𝑐 ∈ ̂ do
2 𝑈 train

ℎ,𝑐 = ∅;
3 for 𝑛 = 1,⋯ , 𝑁sample do

// Assemble subsystem sub and extract the solution associated with 𝑐
4 for 𝑝 ∈ 𝑐 do
5 Connect the archetype component 𝑐 through its 𝑝-th port to another component in the library with a

probability of 𝛽;
6 end
7 Assign parameter value 𝜇𝑐 drawn uniform-randomly from 𝑐 to each component 𝑐 ∈ sub;
8 Assign uniform-random constant Dirichlet boundary conditions to each nonshared global port;
9 Solve the truth problem for the composed subsystem sub;
10 Extract the solution 𝑢trainℎ,𝑐,𝑛 on component 𝑐;
11 𝑈 train

ℎ,𝑐 ← 𝑈 train
ℎ,𝑐 ∪ 𝑢trainℎ,𝑐,𝑛;

12 end
13 end

solutions on the target component to form a state snapshot set 𝑈 train
ℎ,𝑐 ≡ {𝑢trainℎ,𝑐,𝑛}

𝑁sample
𝑛=1 designated for this component. The fundamental

assumption underpinning this process is that the generated set of snapshot solutions sufficiently represents the set of all potential
solutions and boundary conditions the component may experience in an actual system configuration. Algorithm 1 provides an outline
of the empirical process to generate snapshot solutions for archetype components.

4.2. Component-wise RB construction

For each archetype component 𝑐 ∈ ̂, we decompose snapshot solutions in the training set 𝑈 train
ℎ,𝑐 into their bubble and port

olutions as in (2). The bubble solutions are added to a training set 𝑈 train,b
ℎ,𝑐 considered for this component. We then apply the POD

o construct an RB {𝜉b𝑐,𝑖}
𝑁b
𝑐

𝑖=1 for the bubble space ̂b
rb,𝑐 .

.3. Component-wise hyperreduction: BRR theorem

We now present an extension of the original EQP [30,31] to the component-based context. To this end, we first introduce the
RR theorem [32] specialized for the Euclidean space.

emma 3 (Brezzi–Rappaz–Raviart Theorem). Given an 𝑁-dimensional Euclidean space R𝑁 , we introduce a 𝐶1 mapping 𝐺 ∶ R𝑁 → R𝑁 ,
∈ R𝑁 such that the Jacobian 𝐷𝐺(𝐯) ∈ R𝑁×𝑁 is nonsingular, and constants 𝜀, 𝛿, and 𝐿(𝛼) such that

‖𝐺(𝐯)‖2 ≤ 𝜀,
‖

‖

‖

𝐷𝐺−1(𝐯)‖‖
‖2

≤ 𝛿,

sup
𝐰∈�̄�(𝐯,𝛼)

‖𝐷𝐺(𝐯) −𝐷𝐺(𝐰)‖2 ≤ 𝐿(𝛼),

here �̄�(𝐯, 𝛼) ≡ {𝐳 ∶ ‖𝐳 − 𝐯‖2 ≤ 𝛼}. Assume 2𝛿𝐿(2𝛿𝜀) ≤ 1. Then, for all 𝜆 ≥ 2𝛿𝜀 such that 𝛿𝐿(𝜆) < 1, there exists a unique 𝐮 ∈ R𝑁 that
atisfies 𝐺(𝐮) = 0 in the ball �̄�(𝐯, 2𝛿𝜀) and 𝐷𝐺(𝐮) ∈ R𝑁×𝑁 is invertible and satisfies

‖

‖

‖

𝐷𝐺−1(𝐮)‖‖
‖2

≤ 2 ‖‖
‖

𝐷𝐺−1(𝐯)‖‖
‖2

≤ 2𝛿. (9)

dditionally,

‖𝐰 − 𝐮‖2 ≤ 2 ‖‖
‖

𝐷𝐺−1(𝐯)‖‖
‖2

‖𝐺(𝐰)‖2 ≤ 2𝛿 ‖𝐺(𝐰)‖2 ∀𝐰 ∈ �̄�(𝐯, 2𝛿𝜀). (10)

Proof. See [32]. □

Corollary 4 (Effectivity Bound). For all 𝐰 ∈ �̄�(𝐯, 2𝛿𝜀), the effectivity of the error bound 𝛥(𝐰) ≡ 2𝛿 ‖𝐺(𝐰)‖2 is bounded by

𝜂(𝐰) ≡ 𝛥(𝐰) ≤ 2𝛿
(

�̄�(𝐰) + ‖𝐷𝐺(𝐮)‖2
)

, (11)
8

‖𝐰 − 𝐮‖2
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w

where

�̄�(𝐳) ≡ sup
𝐳∈�̄�(𝐰,‖𝐮−𝐰‖2)

‖𝐷𝐺(𝐮) −𝐷𝐺(𝐳)‖2 . (12)

Proof. We first consider the Taylor expansion of 𝐺(⋅) about 𝐰 ∈ R𝑁 ,

𝐺(𝐮) = 𝐺(𝐰) + ∫

1

0
𝐷𝐺(𝐰 + 𝑡(𝐮 − 𝐰))(𝐮 − 𝐰)𝑑𝑡

= 𝐺(𝐰) + ∫

1

0

[

𝐷𝐺(𝐰 + 𝑡(𝐮 − 𝐰)) −𝐷𝐺(𝐮)
]

(𝐮 − 𝐰)𝑑𝑡 +𝐷𝐺(𝐮)(𝐮 − 𝐰).
(13)

We next appeal to 𝐺(𝐮) = 0 and (12) to obtain ‖𝐺(𝐰)‖2 ≤
(

�̄�(𝐰) + ‖𝐷𝐺(𝐮)‖2
)

‖𝐮−𝐰‖2. We then multiply both sides by 2𝛿∕‖𝐮−𝐰‖2
to obtain (11). □

Remark 5. Mathematically, the BRR theorem holds for any nonlinear mapping that satisfies the conditions in Lemma 3. In
the context of numerical approximation of parameterized PDEs, the theorem is applicable as long as the approximate solution
is sufficiently close to the solution and the Jacobian is nonsingular and Lipschitz continuous. In practice, the BRR theorem can
be (and has been) applied to PDEs including Burgers’ equation [44,45], (low-Reynolds-number) Navier–Stokes equations [46,47],
hyperelasticity [31], and heat transfer (as considered in Section 6). However, for certain problems, such as convection-dominated
high-Reynolds-number Navier–Stokes equations, the BRR error bound can be overly conservative and may offer limited practical
utility.

We now specialize this lemma to the component-based context to facilitate the development of our component-wise hyperre-
duction scheme. As such, for each instantiated component 𝑐 ∈ , we introduce the algebraic RB residual and Jacobian 𝐑rb,𝑐 ∶
R𝑁𝑀(𝑐) × 𝑐 → R𝑁𝑀(𝑐) and 𝐉rb,𝑐 ∶ R𝑁𝑀(𝑐) × 𝑐 → R𝑁𝑀(𝑐)×𝑁𝑀(𝑐) as well as the algebraic hyperreduced RB residual and Jacobian
�̃�rb,𝑐 ∶ R𝑁𝑀(𝑐) × 𝑐 → R𝑁𝑀(𝑐) and 𝐉rb,𝑐 ∶ R𝑁𝑀(𝑐) × 𝑐 → R𝑁𝑀(𝑐)×𝑁𝑀(𝑐) . For conciseness, we omit the explicit expressions of these
quantities here and provide them instead in Appendix. Additionally, we introduce 𝐏rb,𝑐 ∶ R𝑁𝑀(𝑐) → R𝑁rb as the linear extension
operator that maps the components’ RB DoF to the assembled system’s DoF.

At the system level, we introduce 𝐑rb ∶ R𝑁rb × → R𝑁rb and 𝐉rb ∶ R𝑁rb × → R𝑁rb×𝑁rb as, respectively, the algebraic residual
and Jacobian of the (truth-quadrature) RB problem (6). We denote the generalized coordinates of the solution by 𝐮rb(𝜇) ∈ R𝑁rb .
We similarly denote the algebraic residual and Jacobian of the hyperreduced RB problem (7) by �̃�rb ∶ R𝑁rb ×  → R𝑁rb and
𝐉rb ∶ R𝑁rb × → R𝑁rb×𝑁rb , respectively, and denote the generalized coordinates of the solution by �̃�rb(𝜇) ∈ R𝑁rb . The system-level
residual and Jacobian ∀𝐰rb ∈ R𝑁rb and ∀𝜇 ∈  can be obtained through

𝐑rb(𝐰rb;𝜇) =
∑

𝑐∈
𝐏rb,𝑐𝐑rb,𝑐 (𝐏𝑇rb,𝑐𝐰rb;𝜇𝑐 ), 𝐉rb(𝐰rb;𝜇) =

∑

𝑐∈
𝐏rb,𝑐𝐉rb,𝑐 (𝐏𝑇rb,𝑐𝐰rb;𝜇𝑐 )𝐏𝑇rb,𝑐 ,

�̃�rb(𝐰rb;𝜇) =
∑

𝑐∈
𝐏rb,𝑐�̃�rb,𝑐 (𝐏𝑇rb,𝑐𝐰rb;𝜇𝑐 ), 𝐉rb(𝐰rb;𝜇) =

∑

𝑐∈
𝐏rb,𝑐𝐉rb,𝑐 (𝐏𝑇rb,𝑐𝐰rb;𝜇𝑐 )𝐏𝑇rb,𝑐 .

Proposition 6. For a system  and given 𝜇 ∈ , we introduce �̄�rb(𝜇) ∈ rb and its associated generalized coordinates �̄�rb(𝜇) ∈ R𝑁rb such
that

‖

‖

𝐮rb(𝜇) − �̄�rb(𝜇)‖‖2 ≤ �̄� (14)

for an �̄� ≥ 0 and 𝐉rb(�̄�rb(𝜇);𝜇) is nonsingular. We further introduce 𝜎 ≡ 𝜎min
(

𝐉rb(�̄�rb(𝜇);𝜇)
)

, where 𝜎min(⋅) denotes the minimum singular
value of its argument. We suppose for some 𝛿𝑅𝑐 ≥ 0 and 𝛿𝐽𝑐 ≥ 0, 𝑐 ∈ , such that ∑𝑐∈ 𝑁𝑀(𝑐)𝛿𝐽𝑐 < 𝜎, the following inequalities hold:

‖

‖

‖

�̃�rb,𝑐 (𝐏𝑇rb,𝑐 �̄�rb(𝜇);𝜇𝑐 )
‖

‖

‖∞
≤ 𝛿𝑅𝑐 ∀𝑐 ∈ , (15)

‖

‖

‖

𝐉rb,𝑐 (𝐏𝑇rb,𝑐 �̄�rb(𝜇);𝜇𝑐 ) − 𝐉rb,𝑐 (𝐏𝑇rb,𝑐 �̄�rb,𝑐 (𝜇);𝜇𝑐 )
‖

‖

‖max
≤ 𝛿𝐽𝑐 ∀𝑐 ∈ , (16)

where for any 𝑐 ∈ , ‖𝐀‖max ≡ max𝑖,𝑗∈{1,…,𝑁𝑀(𝑐)} |𝐴𝑖,𝑗 | for 𝐀 ∈ R𝑁𝑀(𝑐)×𝑁𝑀(𝑐) . We also introduce

𝐿(𝛼) ≡ 2 sup
𝐰∈�̄�(�̄�rb(𝜇),𝛼)

‖

‖

‖

𝐉−1rb (�̄�rb(𝜇);𝜇)𝐉rb(𝐰;𝜇) − 𝐈‖‖
‖2

(17)

and assume

𝐿(�̄�) ≤
𝜎 −

∑

𝑐∈ 𝑁𝑀(𝑐)𝛿𝐽𝑐
2𝜎

, (18)

here �̄� = 2
√

∑

𝑐∈ 𝑁𝑀(𝑐)𝛿2𝑅𝑐∕(𝜎−
∑

𝑐∈ 𝑁𝑀(𝑐)𝛿𝐽𝑐 ). Then, for all 𝜆 ≥ �̄�, there exists a unique solution �̃�rb(𝜇) ∈ R𝑁rb such that �̃�rb(�̃�rb;𝜇) = 0
in the ball �̄�(�̄�rb(𝜇), 𝜆), where 𝐿(𝜆) ≤ (𝜎 −

∑

𝑐∈ 𝑁𝑀(𝑐)𝛿𝐽𝑐 )∕𝜎. Furthermore,

‖ ̃ ‖ (19)
9

‖

𝐮rb(𝜇) − 𝐮rb(𝜇)‖2 ≤ �̄� + �̄�.
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Proof. For notational brevity, we suppress 𝜇 and 𝜇𝑐 ∀𝑐 ∈  throughout the proof. Referring to Lemma 3, we set 𝐺(⋅) ≡ 𝐉−1rb (�̄�rb)�̃�rb(⋅)
nd 𝐯 ≡ �̄�rb. We observe that

‖𝐺(𝐯)‖2 =
‖

‖

‖

𝐉−1rb (�̄�rb)�̃�rb(�̄�rb)
‖

‖

‖2
≤ ‖

‖

‖

𝐉−1rb (�̄�rb)
‖

‖

‖2
‖

‖

‖

�̃�rb(�̄�rb)
‖

‖

‖2
≤

√

∑

𝑐∈
‖

‖

‖

�̃�rb,𝑐 (𝐏𝑇rb,𝑐 �̄�rb)
‖

‖

‖

2

2

𝜎

≤

√

∑

𝑐∈ 𝑁𝑀(𝑐)
‖

‖

‖

�̃�rb,𝑐 (𝐏𝑇rb,𝑐 �̄�rb)
‖

‖

‖

2

∞

𝜎
≤

√

∑

𝑐∈ 𝑁𝑀(𝑐)𝛿2𝑅𝑀(𝑐)

𝜎
,

where the second inequality follows from the component-wise decomposition of the residual and the matrix norm relation
‖𝐉−1rb (�̄�rb)‖2 = 𝜎−1min(𝐉rb(�̄�rb)) = 𝜎−1, the third inequality follows from the relationship between ‖ ⋅‖2 and ‖ ⋅‖∞, and the last inequality
follows from condition (15). Hence, we set 𝜀 ≡

√

∑

𝑐∈ 𝑁𝑀(𝑐)𝛿2𝑅𝑀(𝑐)
∕𝜎 in Lemma 3. Moreover, we have

‖

‖

‖

𝐈 − 𝐉−1rb (�̄�rb)𝐉rb(�̄�rb)
‖

‖

‖2
≤ ‖

‖

‖

𝐉−1rb (�̄�rb)
‖

‖

‖2
‖

‖

‖

𝐉rb(�̄�rb) − 𝐉rb(�̄�rb)
‖

‖

‖2
= 1
𝜎
‖

‖

‖

𝐉rb(�̄�rb) − 𝐉rb(�̄�rb)
‖

‖

‖2

= 1
𝜎

‖

‖

‖

‖

‖

∑

𝑐∈
𝐏rb,𝑐

(

𝐉rb,𝑐 (𝐏𝑇rb,𝑐 �̄�rb) − 𝐉rb,𝑐 (𝐏𝑇rb,𝑐 �̄�rb)
)

𝐏𝑇rb,𝑐
‖

‖

‖

‖

‖2

≤ 1
𝜎
∑

𝑐∈

‖

‖

‖

𝐉rb,𝑐 (𝐏𝑇rb,𝑐 �̄�rb) − 𝐉rb,𝑐 (𝐏𝑇rb,𝑐 �̄�rb)
‖

‖

‖2

≤ 1
𝜎
∑

𝑐∈
𝑁𝑀(𝑐)

‖

‖

‖

𝐉rb(𝐏𝑇rb,𝑐 �̄�rb) − 𝐉rb(𝐏𝑇rb,𝑐 �̄�rb)
‖

‖

‖max
≤ 1
𝜎
∑

𝑐∈
𝑁𝑀(𝑐)𝛿𝐽𝑀(𝑐)

< 1,

(20)

here the first equality follows from the definition ‖𝐉−1rb (�̄�rb)‖2 = 𝜎−1min(𝐉rb(�̄�rb)) = 𝜎−1, the second equality follows from the
omponent-wise decomposition of the Jacobian, the second inequality follows from the triangle inequality, the third inequality
ollows from the relation ‖𝐀‖2 ≤ 𝑁rb‖𝐀‖max ∀𝐀 ∈ R𝑁rb×𝑁rb , the fourth inequality follows from condition (16), and the last inequality
ollows from the assumption ∑

𝑐∈ 𝑁𝑀(𝑐)𝛿𝐽𝑐 < 𝜎. It hence follows that

‖

‖

‖

𝐷𝐺−1(𝐯)‖‖
‖2

= ‖

‖

‖

(𝐉−1rb (�̄�rb)𝐉rb(�̄�rb))
−1‖
‖

‖2
= ‖

‖

‖

(𝐈 + 𝐉−1rb (�̄�rb)𝐉rb(�̄�rb) − 𝐈)−1‖‖
‖2

≤ 1
1 − ‖

‖

‖

𝐉−1rb (�̄�rb)𝐉rb(�̄�rb) − 𝐈‖‖
‖2

≤ 𝜎
𝜎 −

∑

𝑐∈ 𝑁𝑀(𝑐)𝛿𝐽𝑐
,

where the first inequality follows from the Banach lemma which states ∀𝐀 ∈ R𝑁rb×𝑁rb with ‖𝐀‖2 < 1, (𝐈 + 𝐀)−1 exists and satisfies
‖(𝐈 + 𝐀)−1‖2 ≤ (1 − ‖𝐀‖2)−1, and the last inequality follows from (20). We hence set 𝛿 ≡ 𝜎∕(𝜎 −

∑

𝑐∈ 𝑁𝑀(𝑐)𝛿𝐽𝑐 ) in Lemma 3. We in
ddition note that

sup
𝐰∈�̄�(𝐯,𝛼)

‖𝐷𝐺(𝐯) −𝐷𝐺(𝐰)‖2 = sup
𝐰∈�̄�(�̄�rb ,𝛼)

‖

‖

‖

𝐉−1rb (�̄�rb)𝐉rb(�̄�rb) − 𝐉−1rb (�̄�rb)𝐉rb(𝐰)
‖

‖

‖2

= sup
𝐰∈�̄�(�̄�rb ,𝛼)

‖

‖

‖

𝐉−1rb (�̄�rb)𝐉rb(�̄�rb) − 𝐈 + 𝐈 − 𝐉−1rb (�̄�rb)𝐉rb(𝐰)
‖

‖

‖2

≤ ‖

‖

‖

𝐉−1rb (�̄�rb)𝐉rb(�̄�rb) − 𝐈‖‖
‖2

+ sup
𝐰∈�̄�(�̄�rb ,𝛼)

‖

‖

‖

𝐉−1rb (�̄�rb)𝐉rb(𝐰) − 𝐈‖‖
‖2

≤ 2 sup
𝐰∈�̄�(�̄�rb ,𝛼)

‖

‖

‖

𝐉−1rb (�̄�rb)𝐉rb(𝐰) − 𝐈‖‖
‖2
,

where the first inequality follows from the triangle inequality, and the last inequality follows from �̄�rb ∈ �̄�(�̄�rb, 𝛼). We hence set
𝐿(𝛼) ≡ 2 sup𝐰∈�̄�(�̄�rb ,𝛼)

‖

‖

‖

𝐉−1rb (�̄�rb)𝐉rb(𝐰) − 𝐈‖‖
‖2

in (17) in Lemma 3.
Having defined 𝜖, 𝛿, and 𝐿(𝛼) in the BRR theorem in Lemma 3 for the HRBE method, we now apply the BRR theorem. If

2𝛿𝐿(2𝛿𝜀) = 2𝜎𝐿(�̄�)∕(𝜎−
∑

𝑐∈ 𝑁𝑀(𝑐)𝛿𝐽𝑐 ) ≤ 1, we readily deduce, for all 𝜆 ≥ 2𝛿𝜀 = �̄� such that 𝐿(𝜆) < 1∕𝛿 = (𝜎−
∑

𝑐∈ 𝑁𝑀(𝑐)𝛿𝐽𝑐 )∕𝜎, the
existence of a unique solution 𝐳 ∈ R𝑁rb that satisfies 𝐺(𝐳) = 𝐉−1rb (�̄�rb)�̃�rb(𝐳) = 0 in the ball �̄�(�̄�rb, 𝜆). Since �̃�rb satisfies �̃�rb(�̃�rb) = 0,
we conclude it is indeed the unique solution to both 𝐺(⋅) = 0 and �̃�rb(⋅) = 0. Moreover, we set 𝐰 ≡ �̃�rb = 𝐯 in (10) to obtain

‖

‖

𝐮rb − �̃�rb‖‖2 ≤ ‖

‖

𝐮rb − �̄�rb‖‖2 + ‖

‖

�̄�rb − �̃�rb‖‖2 ≤ �̄� + 2𝛿 ‖‖
‖

𝐉−1rb (�̄�rb)�̃�rb(�̄�rb)
‖

‖

‖2

≤ �̄� + 2𝜎
𝜎 −

∑

𝑐∈ 𝑁𝑀(𝑐)𝛿𝐽𝑐

‖

‖

‖

𝐉−1rb (�̄�rb)
‖

‖

‖2
‖

‖

‖

�̃�rb(�̄�rb)
‖

‖

‖2

≤ �̄� + 2

√

∑

𝑐∈ 𝑁𝑀(𝑐)𝛿2𝑅𝑀(𝑐)

𝜎 −
∑

𝑐∈ 𝑁𝑀(𝑐)𝛿𝐽𝑐
= �̄� + �̄�,

where the first inequality follows from the triangle inequality, the second inequality follows from condition (14) and the BRR error
bound (10), the third inequality follows from the definition of 𝛿 in the component-wise context and the matrix norm inequality, the
fourth inequality follows from condition (15), and the last equality follows from the definition of �̄�. □
10
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We can modify Proposition 6 to obtain an upper bound for the -norm of the error between the RB and HRBE solutions. To this
end, we define 𝜆min and 𝜆max such that

𝜆min = inf
𝑣∈

‖𝑣‖2
‖𝐯‖22

, 𝜆max = sup
𝑣∈

‖𝑣‖2
‖𝐯‖22

, (21)

and introduce the following corollaries.

Corollary 7 (Absolute Error Bound). If all conditions of Proposition 6 hold, then

‖

‖

𝑢rb(𝜇) − �̃�rb(𝜇)‖‖ ≤ (�̄� + �̄�)
√

𝜆max, (22)

ith the same �̄� and �̄� as in Proposition 6.

roof. We first appeal to (21) to obtain ‖

‖

𝑢rb(𝜇) − �̃�rb(𝜇)‖‖ ≤
√

𝜆max
‖

‖

𝐮rb(𝜇) − �̃�rb(𝜇)‖‖2. We then incorporate (19) to obtain (22). □

orollary 8 (Relative Error Bound). If all conditions of Proposition 6 hold and conditions (14), (15), and (18) are respectively replaced
y

‖

‖

𝐮rb,𝑐 (𝜇) − �̄�rb,𝑐 (𝜇)‖‖2 ≤ �̄�‖𝐮rb(𝜇)‖2 ∀𝑐 ∈ ,
‖

‖

‖

�̃�rb,𝑐 (𝐏𝑇rb,𝑐 �̄�rb(𝜇);𝜇𝑐 )
‖

‖

‖∞
≤ 𝛿𝑅𝑐‖𝐮rb(𝜇)‖2 ∀𝑐 ∈ ,

𝐿
(

2‖𝐮rb(𝜇)‖2

√

∑

𝑐∈ 𝑁𝑀(𝑐)𝛿2𝑅𝑐
𝜎 −

∑

𝑐∈ 𝑁𝑀(𝑐)𝛿𝐽𝑐

)

≤
𝜎 −

∑

𝑐∈ 𝑁𝑀(𝑐)𝛿𝐽𝑐
2𝜎

,

hen
‖

‖

𝑢rb(𝜇) − �̃�rb(𝜇)‖‖
‖

‖

𝑢rb(𝜇)‖‖
≤ (�̄� + �̄�)

√

𝜆max
𝜆min

, (23)

ith the same �̄� and �̄� as in Proposition 6.

roof. We first observe

‖

‖

𝑢rb(𝜇) − �̃�rb(𝜇)‖‖ ≤ ‖

‖

𝐮rb(𝜇) − �̃�rb(𝜇)‖‖2
√

𝜆max ≤ (�̄� + �̄�)‖𝐮rb(𝜇)‖2
√

𝜆max,

here the first inequality follows from (21), and the second equality follows from the application of Proposition 6 with �̄� and 𝛿𝑅𝑐 ,
𝑐 ∈ , replaced by �̄�‖𝐮rb(𝜇)‖2 and 𝛿𝑅𝑐‖𝐮rb(𝜇)‖2, respectively. We finally appeal to (21) to obtain

√

𝜆min
‖

‖

𝐮rb(𝜇)‖‖2 ≤ ‖

‖

𝑢rb(𝜇)‖‖ , which
in turn yields (23). □

Remark 9. The values of 𝜆min and 𝜆max are solely functions of the geometrical parameters in the system. The archetype
omponents considered in this study, which will be introduced in Section 6, admit piecewise affine decompositions in their geometric
arametrization. Consequently, computing 𝜆min and 𝜆max can be carried out efficiently in the online phase. Specifically, for each
nstantiated component 𝑐 ∈ , if {𝜙𝑐,𝑖}

𝑀(𝑐)
𝑖=1 denotes the geometric-parameter-dependent basis for ℎ,𝑐 and 𝐕𝑐 ∶ 𝑐 → R𝑀(𝑐)×𝑀(𝑐)

denotes its geometric-parameter-dependent inner-product matrix such that (𝐕𝑐 (𝜇𝑐 ))𝑖,𝑗 = (𝜙𝑐,𝑗 , 𝜙𝑐,𝑖)𝑐 ∀𝜇𝑐 ∈ 𝑐 , 𝑖, 𝑗 = 1,… ,𝑀(𝑐), the
systems’s geometric-parameter-dependent inner-product matrix 𝐕 ∶  → Rℎ×ℎ is given by 𝐕(𝜇) =

∑

𝑐∈ 𝐏𝑐𝐕𝑐 (𝜇𝑐 )𝐏𝑇𝑐 ∀𝜇 ∈ . Here,
𝐏𝑐 ∶ R𝑀(𝑐) → Rℎ ∀𝑐 ∈  are linear extension operators that map the component’s truth to system’s DoF. Since (we have assumed)
𝐕𝑐 (⋅) ∀𝑐 ∈  admit piecewise affine decompositions, forming 𝐕𝑐 (⋅) and hence 𝐕(⋅) during the online phase does not rely on the
components’ truth FE discretizations and quadrature rules. Additionally, the computation of extreme eigenvalues of 𝐕(⋅) (i.e., 𝜆min
and 𝜆max) can be performed efficiently using iterative methods such as the Lanczos algorithm [48].

4.4. Component-wise hyperreduction: formulation

Using Proposition 6 and Corollaries 7 and 8, we now develop a component-wise hyperreduction training routine for the archetype
components in the library. In Section 4.1, we introduced for each archetype component 𝑐 ∈ ̂, a training parameter set 𝛯 train

𝑐 and its
corresponding state training set 𝑈 train

ℎ,𝑐 (Algorithm 1). In Section 4.2, we also described a procedure to construct an RB for its bubble
space ̂b

rb,𝑐 using its associated bubble training set 𝑈 train,b
ℎ,𝑐 . Since hyperreduction is carried out with respect to the RB solutions, for

each archetype component 𝑐, we define a state training set 𝑈 train
rb,𝑐 ≡ {𝑢trainrb,𝑐,𝑛}

𝑁sample
𝑛=1 (or its algebraic equivalent 𝐔train

rb,𝑐 ≡ {𝐮trainrb,𝑐,𝑛}
𝑁sample
𝑛=1 ),

where the RB snapshots 𝑢trainrb,𝑐,𝑛, 𝑛 ∈ {1,… , 𝑁sample}, are generated using Algorithm 2.
Additionally, for each archetype component 𝑐 ∈ ̂, we introduce the algebraic RB residual and Jacobian 𝐑rb,𝑐 ∶ R𝑁𝑐 × ̂𝑐 → R𝑁𝑐

and 𝐉rb,𝑐 ∶ R𝑁𝑐 × ̂𝑐 → R𝑁𝑐×𝑁𝑐 formulated in Appendix. We further denote the barred versions of the introduced algebraic RB
terms. These barred versions are formulated the same as their respective RB counterparts, albeit with the truth quadrature weights

𝑄𝑐 ̂ 𝑄𝑐 ̂
11

{𝜌𝑐,𝑞}𝑞=1 ∀𝑐 ∈  in (32) replaced by �̄�𝑐 ≡ {�̄�𝑐,𝑞}𝑞=1 ∀𝑐 ∈ , which are the design variables (unknowns) for the hyperreduction problem.
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Algorithm 2: Generating bubble RB snapshots for hyperreduction of archetype components.

Input: The previously generated set of truth snapshot solutions 𝑈 train
ℎ,𝑐 ∀𝑐 ∈ ̂

Output: The set of RB snapshot solutions 𝑈 train
rb,𝑐 ∀𝑐 ∈ ̂

1 for 𝑐 ∈ ̂ do
2 𝑈 train

rb,𝑐 = ∅;
3 for 𝑛 = 1,⋯ , 𝑁sample do
4 Decompose 𝑢trainℎ,𝑐,𝑛 in the previously constructed training set 𝑈 train

ℎ,𝑐 in Algorithm 1 into bubble 𝑢train,bℎ,𝑐,𝑛 and port

solutions {𝑢train,𝑝ℎ,𝑐,𝑛 }𝑝∈𝑐 , as in (2);

5 Compute the restriction of port solutions on the ports (i.e., {𝑢train,𝑝ℎ,𝑐,𝑛
|

|

|𝛾𝑐,𝑝
}𝑝∈𝑐 );

6 Compute 𝑢train,brb,𝑐,𝑛 by solving (6) for a system composed of only component 𝑐 with {𝑢train,𝑝ℎ,𝑐,𝑛
|

|

|𝛾𝑐,𝑝
}𝑝∈𝑐 as the Dirichlet

boundary conditions imposed on its 𝑛𝛾𝑐 ports;
7 Compute 𝑢trainrb,𝑐,𝑛 = 𝑢train,brb,𝑐,𝑛 +

∑

𝑝∈𝑐
𝑢train,𝑝ℎ,𝑐,𝑛 ;

8 𝑈 train
rb,𝑐 ← 𝑈 train

rb,𝑐 ∪ 𝑢trainrb,𝑐,𝑛;
9 end
10 end

Then, we pose the component-wise hyperreduction problem in the offline phase for 𝑐 ∈ ̂ as follows: given a parameter training set
𝛯 train
𝑐 , state training set 𝑈 train

rb,𝑐 (or its algebraic equivalent 𝐔train
rb,𝑐 ), domain volume |𝛺𝑐 |, and hyperparameter 𝛿𝑐 , find �̄�∗𝑐 ∈ R𝑄𝑐 such

that

�̄�∗𝑐 = arg min
{�̄�𝑐,𝑞}

𝑄𝑐
𝑞=1

‖�̄�𝑐,𝑞‖0 (24)

subject to

�̄�𝑐,𝑞 ≥ 0, 𝑞 = 1,… , 𝑄𝑐 , (25)

|

|

|

|𝛺𝑐 | −
𝑄𝑐
∑

𝑞=1
�̄�𝑐,𝑞

|

|

|

≤ 𝛿𝑐 , (26)

‖

‖

‖

�̄�rb,𝑐 (𝐮trainrb,𝑐 (𝜇);𝜇, �̄�𝑐 )
‖

‖

‖∞
≤ 𝛿𝑐 ∀𝜇 ∈ 𝛯 train

𝑐 , (27)
‖

‖

‖

𝐉rb,𝑐 (𝐮trainrb,𝑐 (𝜇);𝜇) − �̄�rb,𝑐 (𝐮trainrb,𝑐 (𝜇);𝜇, �̄�𝑐 )
‖

‖

‖max
≤ 𝛿𝑐 ∀𝜇 ∈ 𝛯 train

𝑐 . (28)

The 𝓁0-minimization problem seeks the sparsest quadrature rule that satisfies the constraints. In practice, we approximate the 𝓁0-
minimization problem as an 𝓁1-minimization problem (with the objective function ∑𝑄𝑐

𝑞=1 �̄�𝑐,𝑞) and solve the problem using a simplex
method following [31]. The enforcement of the constant function constraint (26) enhances the robustness of the hyperreduction
training and is a reasonable condition for any quadrature scheme [31]. The RQ rule for each component is determined by

( ̃̂𝑥𝑟𝑐,𝑞 ,
̃̂𝜌𝑟𝑐,𝑞)

�̃�𝑟
𝑐

𝑞=1 = ((𝑥𝑐,𝑞 , �̄�∗𝑐,𝑞)| �̄�
∗
𝑐,𝑞 > 0)𝑄𝑐𝑞=1. In this work, we set 𝛿𝑅𝑐 = 𝛿𝐽𝑐 = 𝛿𝑐 . To construct the RQ rule ( ̃̂𝑥𝑓𝑐,𝑞 ,

̃̂𝜌𝑓𝑐,𝑞)
�̃�𝑓
𝑐

𝑞=1 for the output (8),
we follow the procedure in [31] and replace the constraints (26)–(28) with analogous constraints for the output functional 𝐹 (⋅;𝜇)
and solve the EQP optimization problem.

5. Offline and online computational procedure

In this section, we develop the offline–online computational procedure for the HRBE method. A key challenge to offline–
online computational decomposition that provides quantitative control of the hyperreduction error at the system level is this: the
hyperreduction training is performed for each archetype component independently in the offline phase; therefore, unlike in the
monodomain setting for which the EQP is originally designed (e.g., [31]), the minimum singular value of the Jacobian of the
ultimate systems created by assembling the trained archetype components, which is required in (19), (22), and (23) to control the
error, is not available at the training time. To address this challenge, we propose an approach where the hyperreduction training
for any 𝑐 ∈ ̂ is conducted in the offline phase with various 𝛿𝑐 values. Subsequently, in the online phase, the appropriate RQ rule
for each component is adaptively chosen and applied to solve the HRBE problem through an iterative bootstrap process. We now
present the offline–online computational procedure.

5.1. Offline phase

In the offline stage, we prepare the RB {𝜉b𝑐,𝑖}
𝑁b
𝑐

𝑖=1 of the bubble spaces ̂b
rb,𝑐 and the RQ rules ( ̃̂𝑥𝑟𝑐,𝑞 ,

̃̂𝜌𝑟𝑐,𝑞)
�̃�𝑟
𝑐

𝑞=1 and ( ̃̂𝑥𝑓𝑐,𝑞 ,
̃̂𝜌𝑓𝑐,𝑞)

�̃�𝑓
𝑐

𝑞=1 for
̂ train
12

each of 𝑁arch archetype components 𝑐 ∈ . To construct the RB, we first use Algorithm 1 to generate the training set 𝑈ℎ,𝑐 for each
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archetype component 𝑐. For the 𝑛-th sample subsystem, 𝑛 ∈ {1,… , 𝑁sample}, of the archetype component 𝑐, the computation of the
solution 𝑢trainℎ,𝑐,𝑛 in Line 9 of Algorithm 1 requires (𝑄sub

ℎ,𝑐,𝑛) operations for the assembly of the residual and Jacobian and (( sub
ℎ,𝑐,𝑛)

𝑙)
operations for the solution of the linear system per Newton iteration, where 𝑄sub

ℎ,𝑐,𝑛 is the subsystem’s number of truth quadrature
points,  sub

ℎ,𝑐,𝑛 is the subsystem’s number of truth DoF, and the coefficient 1 ≤ 𝑙 ≤ 2 depends on the solver and the domain dimension.
Typical problems that we consider require 5 to 15 Newton iterations for convergence. The subsequent computational cost of the
POD is negligible compared to the cost to generate the training set.

We now analyze the cost of hyperreduction for each archetype component 𝑐 ∈ ̂. Using Algorithm 2 to generate the RB snapshots
requires the solution of a nonlinear system of equations of size 𝑁b

𝑐 for each training sample. This incurs, for each snapshot, a cost
of (𝑁2

𝑐𝑄𝑐 ) operations for computing the residual and Jacobian and a cost of ((𝑁b
𝑐 )

3) operations for solving the linear system in
each Newton iteration. Additionally, computing the outputs needed in output hyperreduction of each component requires (𝑄𝑐 )
operations for each training sample. Moreover, for each archetype component, a simplex method is used to approximately solve
the hyperreduction problem (24)–(28) for different 𝛿𝑐 values. Each problem has 𝑄𝑐 unknowns, 𝑄𝑐 positivity constraints, 1 constant
function constraint, 𝑁sample𝑁𝑐 residual constraints, and 𝑁sample𝑁2

𝑐 Jacobian constraints. In practice, the absolute value constant
function, residual, and Jacobian constraints are converted into 2(1+𝑁sample𝑁𝑐 +𝑁sample𝑁2

𝑐 ) inequality constraints. Additionally, the
output hyperreduction involves the solution of an optimization problem with 𝑄𝑐 unknowns and 2(1+𝑁sample) inequality constraints.

5.2. Online phase: adaptive RQ selection

We now describe a procedure to find the RQ rule of each component in the system in the online phase such that, for any given
topological configuration and 𝜇 ∈ , the HRBE solution �̃�rb(𝜇) achieves the target -norm error with respect to the RB solution
𝑢rb(𝜇). Our formulation builds on Corollaries 7 and 8. We note that since the error is measured with respect to 𝑢rb(𝜇), it is implicitly
assumed that �̄�rb(𝜇) = 𝐮rb(𝜇) in Proposition 6, and �̄� = 0 in (19), (22), and (23).

We first discuss an online-efficient procedure to compute 𝜎min
(

𝐉rb(𝐮rb(𝜇);𝜇)
)

(or more precisely approximate it), required for
computing �̄� in (19), (22), and (23). A direct computation of 𝜎min

(

𝐉rb(𝐮rb(𝜇);𝜇)
)

poses two computational challenges. Firstly, the
omputation requires the RB solution 𝐮rb(𝜇), which defeats the purpose of hyperreduction; we wish to use only its HRBE counterpart
rb(𝜇). Secondly, it involves forming the RB Jacobian 𝐉rb(⋅;𝜇), which depends on the components’ truth quadrature rules and prevents

efficient online computation.
To address these challenges, we appeal to the BRR theorem. We set 𝐺(⋅) ≡ 𝐑rb(⋅;𝜇) and 𝐯 ≡ �̃�rb(𝜇) in Lemma 3, assume

𝐉rb(�̃�rb(𝜇);𝜇) is nonsingular and the conditions of the theorem hold, and apply (9) to obtain

‖

‖

‖

𝐉−1rb (𝐮rb(𝜇);𝜇)
‖

‖

‖2
= 1
𝜎min

(

𝐉rb(𝐮rb(𝜇);𝜇)
) ≤ 2 ‖‖

‖

𝐉−1rb (�̃�rb(𝜇);𝜇)
‖

‖

‖2
= 2
𝜎min

(

𝐉rb(�̃�rb(𝜇);𝜇)
) . (29)

herefore, 𝜎min
(

𝐉rb(�̃�rb(𝜇);𝜇)
)

∕2 is a lower bound for 𝜎min
(

𝐉rb(𝐮rb(𝜇);𝜇)
)

. In order to approximate 𝜎min
(

𝐉rb(�̃�rb(𝜇);𝜇)
)

we appeal to
he following lemma.

emma 10. For any three matrices 𝐀 ∈ R𝑁×𝑁 , 𝐁 ∈ R𝑁×𝑁 , and 𝐂 ∈ R𝑁×𝑁 such that 𝐀 = 𝐁 + 𝐂

|𝜎min(𝐀) − 𝜎min(𝐁)| ≤ 𝜎max(𝐂), (30)

where 𝜎min(⋅) and 𝜎max(⋅), respectively, correspond to the minimum and maximum singular values of their argument.

Proof. We first observe that, for 𝐀 = 𝐁 + 𝐂,

𝜎min(𝐀) = min
𝐯∈R𝑁

‖(𝐁 + 𝐂)𝐯‖2
‖𝐯‖2

≥ min
𝐯∈R𝑁

‖𝐁𝐯‖2 − ‖𝐂𝐯‖2
‖𝐯‖2

≥ min
𝐯∈R𝑁

‖𝐁𝐯‖2
‖𝐯‖2

− max
𝐯∈R𝑁

‖𝐂𝐯‖2
‖𝐯‖2

= 𝜎min(𝐁) − 𝜎max(𝐂)

nd hence 𝜎min(𝐁) − 𝜎min(𝐀) ≤ 𝜎max(𝐂), where the first and last equality follow from the definition of the extreme singular values,
nd the first inequality follows from the triangle inequality. We apply an analogous sequence of inequalities to 𝐁 = 𝐀−𝐂 to obtain
min(𝐀) − 𝜎min(𝐁) ≤ 𝜎max(𝐂). The combination of the two inequalities yields the desired result. □

The application of the lemma to 𝐉rb(�̃�rb(𝜇);𝜇) = 𝐉rb(�̃�rb(𝜇);𝜇) +
(

𝐉rb(�̃�rb(𝜇);𝜇) − 𝐉rb(�̃�rb(𝜇);𝜇)
)

yields

|𝜎min(𝐉rb(�̃�rb(𝜇);𝜇)) − 𝜎min(𝐉rb(�̃�rb(𝜇);𝜇))| ≤ 𝜎max(𝐉rb(�̃�rb(𝜇);𝜇) − 𝐉rb(�̃�rb(𝜇);𝜇)).

In other words, as the disparity between the RB and hyperreduced RB Jacobians decreases, so does the discrepancy between
𝜎min(𝐉rb(�̃�rb(𝜇);𝜇)) and 𝜎min(𝐉rb(�̃�rb(𝜇);𝜇)). Given that the hyperreduction training for each archetype component is intended to reduce
this very gap, we propose to use 𝜎min(𝐉rb(�̃�rb(𝜇);𝜇)) in place of 𝜎min(𝐉rb(�̃�rb(𝜇);𝜇)). Finally, we combine this approximation with the
lower-bound estimate (29) to conservatively approximate 𝜎min

(

𝐉rb(𝐮rb(𝜇);𝜇)
)

by 𝜎min

(

𝐉rb(�̃�rb(𝜇);𝜇)
)

∕2.
We finally propose the adaptive procedure, Algorithm 3, to find the components’ RQ rules and the HRBE solution in the online

hase. For a given 𝜇 ∈  and a desired system-level -norm error 𝜖 between the RB and HRBE solutions, we first compute
�̄� = 𝜖∕

√

𝜆max for absolute error control (or �̄� = 𝜖∕
√

𝜆max∕𝜆min for relative error control). We then use the RQ rules associated
̃ ̃ ̃
13

ith the initial 𝛿𝑐 values ∀𝑐 ∈  to compute the HRBE solution 𝐮rb(𝜇) and 𝜎 ≡ 𝜎min(𝐉rb(𝐮rb(𝜇);𝜇))∕2. Then, for all 𝑐 ∈ , we
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Algorithm 3: Adaptive selection of RQ rules and solving the HRBE problem in the online phase.
Input: System-level 𝜇 ∈  and desired -norm error 𝜖 ∈ R>0 between RB and HRBE solutions
Output: The HRBE solution and components’ RQ rules

1 Compute 𝜆max (and 𝜆min if 𝜖 is the relative error) for the system;
2 Set �̄� = 𝜖∕

√

𝜆max (or �̄� = 𝜖∕
√

𝜆max∕𝜆min if 𝜖 is the relative error);
3 Select the initial hyperreduction tolerances 𝛿𝑐 ∀𝑐 ∈ ;
4 while true do
5 Set the RQ rules associated with the current 𝛿𝑐 values ∀𝑐 ∈ ;
6 Solve the HRBE problem to find �̃�rb(𝜇);
7 Find 𝜎 ≡ 𝜎min(𝐉rb(�̃�rb(𝜇);𝜇))∕2;
8 Set 𝛿𝑅𝑐 = 𝛿𝐽𝑐 = 𝛿𝑐 for all 𝑐 ∈  (or 𝛿𝑅𝑐 = 𝛿𝐽𝑐 = 𝛿𝑐∕ ‖‖�̃�rb(𝜇)‖‖2 if 𝜖 is the relative error);

9 if ∑𝑐∈ 𝑁𝑀(𝑐)𝛿𝐽𝑐 ≥ 𝜎 or 2
√

∑

𝑐∈ 𝑁𝑀(𝑐)𝛿2𝑅𝑐∕(𝜎 −
∑

𝑐∈ 𝑁𝑀(𝑐)𝛿𝐽𝑐 ) > �̄� then
10 Update 𝛿𝑐 and subsequently 𝛿𝑅𝑐 and 𝛿𝐽𝑐 ∀𝑐 ∈  such that both conditions hold;
11 Go to Step 5;
12 else
13 break;
14 end
15 end

set 𝛿𝑅𝑐 = 𝛿𝐽𝑐 = 𝛿𝑐 for absolute error control (or 𝛿𝑅𝑐 = 𝛿𝐽𝑐 = 𝛿𝑐∕ ‖‖�̃�rb(𝜇)‖‖2 for relative error control). If ∑

𝑐∈ 𝑁𝑀(𝑐)𝛿𝐽𝑐 ≥ 𝜎 or
2
√

∑

𝑐∈ 𝑁𝑀(𝑐)𝛿2𝑅𝑐∕(𝜎 −
∑

𝑐∈ 𝑁𝑀(𝑐)𝛿𝐽𝑐 ) > �̄�, the hyperreduction tolerances 𝛿𝑐 = 𝛿𝑅𝑐 = 𝛿𝐽𝑐 of each component 𝑐 ∈  is adjusted such
that these conditions hold. We then use the RQ rules associated with the new hyperreduction tolerances to compute the new HRBE
solution �̃�rb(𝜇) and 𝜎 = 𝜎min

(

𝐉rb(�̃�rb(𝜇);𝜇)
)

∕2. This process is repeated until convergence; for the problems considered in Section 6,
the procedure converges in two iterations.

Remark 11. In this work, we do not consider adaptive selection of the RB for each component to control the truth vs RB
error. Instead, we consider an adaptive selection of hyperreduction tolerance 𝛿𝑐 , and hence the RQ rules, for each component to
achieve the desired system-level hyperreduction error. Thus, the RB is fixed independent of the target hyperreduction tolerance for
each archetype component. We focus on developing online-adaptive hyperreduction for component-based systems, and defer the
development of online-adaptive RB selection for component-based systems to future work.

5.3. Online phase: computational cost and memory footprint

We now remark on the computational cost of solving the HRBE problem using Algorithm 3 as opposed to that for solving the truth
problem. For the truth problem, each iteration of Newton’s method necessitates (𝑄ℎ ≡

∑

𝑐∈ 𝑄𝑀(𝑐)) operations for evaluating the
truth residual and Jacobian. Additionally, the solution of the linear system (5) in every Newton iteration requires ( 𝑛

ℎ ) operations,
where 1 ≤ 𝑛 ≤ 2 depends on the domain dimension and the solver employed. Moreover, computing the truth output involves (𝑄ℎ)
perations.

On the other hand, each cycle of the loop in Algorithm 3 (Lines 4–15) involves solving the HRBE problem and computing
min(𝐉rb(�̃�rb(𝜇);𝜇)). In each Newton iteration, evaluating the HRBE residual �̃�rb(⋅;𝜇) and Jacobian 𝐉rb(⋅;𝜇) requires (∑𝑐∈ 𝑁

2
rb�̃�

𝑟
𝑀(𝑐))

(𝑄ℎ) operations, where �̃�𝑟𝑐 is the number of RQ points of the archetype component 𝑐 ∈ ̂ in a given cycle. In addition, finding
he Newton update requires solving a linear system—which is component-block-wise sparse—in (𝑁𝑛

rb)≪ ( 𝑛
ℎ ) operations. Also,

omputing the minimum singular value involves (𝑁𝑛
rb) operations. Finally, once �̃�rb(𝜇) is found, computing the approximate output

r̃b(⋅;𝜇) requires (
∑

𝑐∈ �̃�
𝑓
𝑀(𝑐))≪ (𝑄ℎ) operations.

We now compare the memory footprint of the truth and HRBE formulations. The storage requirement for the truth problem,
ominated by the truth Jacobian storage, is 

(

 𝑛
ℎ
)

; 𝑛 = 1 if an iterative solver is used at each iteration of the Newton method,
therwise 𝑛 = 4∕3 for 𝑑 ≤ 3 to store factorization. For the HRBE problem, the entire library must be loaded in the computer memory.
o compute the residual �̃�rb(⋅;𝜇), Jacobian 𝐉rb(⋅;𝜇), and output functional 𝐹 (⋅;𝜇), we precompute and store the following quantities

or each archetype component 𝑐 ∈ ̂: (i) the RQ rules ( ̃̂𝑥𝑟𝑐,𝑞 ,
̃̂𝜌𝑟𝑐,𝑞)

�̃�𝑟
𝑐

𝑞=1 and ( ̃̂𝑥𝑓𝑐,𝑞 ,
̃̂𝜌𝑓𝑐,𝑞)

�̃�𝑓
𝑐

𝑞=1 for different 𝛿𝑐 values, (ii) the values of the

ubble space basis {𝜉b𝑐,𝑖}
𝑁b
𝑐

𝑖=1 and the port basis {�̂�𝑝𝑐,𝑖}
 𝑝
𝑐

𝑖=1 for all ports 𝑝 ∈ 𝑐 at the RQ points { ̃̂𝑥𝑟𝑐,𝑞}
�̃�𝑟
𝑐

𝑞=1 and { ̃̂𝑥𝑓𝑐,𝑞}
�̃�𝑓
𝑐

𝑞=1 associated with

ifferent 𝛿𝑐 values, and (iii) the gradient values of the bubble space basis {∇𝜉b𝑐,𝑖}
𝑁𝑏
𝑐

𝑖=1 and the port basis {∇�̂�𝑝𝑐,𝑖}
 𝑝
𝑐

𝑖=1 for all ports 𝑝 ∈ 𝑐

t the RQ points { ̃̂𝑥𝑟𝑐,𝑞}
�̃�𝑟
𝑐

𝑞=1 and { ̃̂𝑥𝑓𝑐,𝑞}
�̃�𝑓
𝑐

𝑞=1 associated with different 𝛿𝑐 values. Therefore, the total online storage for 𝑐 ∈ ̂ is

(𝑑 + 1)
∑

𝑁𝛿𝑐

(

�̃�𝑟𝑐 + �̃�
𝑓
𝑐

)
⎛

⎜

⎜

1 +𝑁b
𝑐 +

∑

 𝑝
𝑐

⎞

⎟

⎟

,
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Table 1
Coefficients of the aluminum’s thermal conductivity equation (31).

Coefficient 𝑘0 𝑘1 𝑘2 𝑘3 𝑘4 𝑘5 𝑘6 𝑘7
Value (W/K) 0.637 −1.144 7.462 −12.691 11.917 −6.187 1.639 −0.173

Fig. 2. Archetype components in their reference domains. From left to right: rod, bracket, tee and cross. Local ports are shown by red dashed lines.

where 𝑁𝛿𝑐 is the number of hyperreduction tolerances of 𝑐 ∈ ̂ for which the state and output hyperreduction trainings are
performed. Therefore, the online storage is independent of  b

𝑐 and 𝑄𝑐 ∀𝑐 ∈ ̂. Furthermore, owing to 𝑁b
𝑐 ≪  b

𝑐 , �̃�𝑟𝑐 ≪ 𝑄𝑐 ,
and �̃�𝑓𝑐 ≪ 𝑄𝑐 ∀𝑐 ∈ ̂, the online storage requirement for the HRBE problem is significantly smaller than that of the truth problem,
articularly when the truth DoF is large and there is a significant reuse of archetype components: i.e., 𝑁arch is small relative to the

size of the system, which is the case for which the HRBE method is designed. It is important to note that the storage requirement
scales with 𝑁arch rather than 𝑁comp. Therefore, employing the HRBE method ensures that the storage and computational cost of the
nline phase are independent of ℎ and 𝑄ℎ, as desired.

6. Example: nonlinear thermal fin systems

6.1. Problem description

We now apply the HRBE method to two-dimensional nonlinear thermal fin systems. Systems are made of an aluminum alloy [49]
with a temperature-dependent thermal conductivity 𝑘 ∶ [1, 300] K → [4.341, 177.868] W∕K that satisfies

log(𝑘(𝑥)) =
7
∑

𝑖=0
𝑘𝑖 (log(𝑥))𝑖 ∀𝑥 ∈ [1, 300] K, (31)

where 𝑘𝑖, 𝑖 = 0,… , 7, are given in Table 1. The parameterized continuous residual form for the ultimate systems is

𝑅(𝑤, 𝑣;𝜇) = ∫𝛺(𝜇)
(𝑘(𝑤)∇𝑤) ⋅ ∇𝑣 𝑑𝑥 − ∫𝛺(𝜇)

𝑓 (𝜇) 𝑣 𝑑𝑥 ∀𝑤, 𝑣 ∈  ,

where  ≡
{

𝑣 ∈ 𝐻1(𝛺(𝜇))||
|

𝑣𝛤𝐷 = 0
}

, and 𝑓 ∶  → 𝐿2(𝛺(𝜇)) is the volumetric source term, which is assumed to be constant within
each component. The residual form does not admit an affine decomposition, as the first integral depends nonlinearly on the field
variable.

Remark 12. The HRBE method, like the (monodomain) EQP method [31], can also treat other types of nonlinear solution and
parameter dependencies, including those arising from nonlinear geometric transformations from reference to physical domains of
the instantiated components.

6.2. Archetype component library

Our archetype component library comprises four archetype components as shown in Fig. 2. Each archetype component is
characterized by two geometric parameters 𝜇1 and 𝜇2, and one physical parameter 𝜇3 ∈ [0, 10] W∕cm2 associated with volumetric
heat source. For all components, 𝜇1 ∈ [0.5, 1] cm and 𝜇2 ∈ [0.5, 1] cm, with the exception of the rod component where 𝜇1 ∈ [3, 6]
cm. The values of geometric parameters 𝜇1 and 𝜇2 in the reference domain of all archetype components are 1 cm, except for 𝜇1
of the rod component, which is 4 cm. All components admit piecewise affine geometric transformations from their reference to
physical spatial domains. Therefore, 𝜆min and 𝜆max of the systems instantiated from these components, required in Algorithm 3, can
be computed efficiently during the online phase; cf. Remark 9. As shown in Fig. 2, the rod and bracket components have two local
ports, the tee component has three local ports, and the cross component has four local ports. All ports are mapped from the same
17-DoF reference port discretized by eight quadratic line elements. Furthermore, all components are discretized using quadratic
triangular elements leading to  b

rod = 691,  b
bracket = 703,  b

tee = 1026, and  b
cross = 1165.

The offline training proceeds in three sequential steps. First, for each archetype component we generate a set of empirical training
data using Algorithm 1. Specifically, for each target component, we create 𝑁 = 100 sample subsystems by connecting it with
15

sample
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Fig. 3. Decay of POD eigenvalues in the RB construction for the bubble space of different archetype components.

a probability of 𝛽 = 0.8 to other components in the library through each of its ports. We then assign uniformly random parameter
values to the components in the subsystems and set uniformly random constant Dirichlet boundary conditions to their nonshared
global ports, ranging from 1 K to 250 K.

Second, we construct an RB for the bubble space of each archetype component using the POD capturing 99.9% of the energy
(i.e., the sum of POD eigenvalues) of the correlation matrix associated with its bubble snapshot matrix. This results in 𝑁b

rod = 3,
𝑁b

bracket = 3, 𝑁b
tee = 6, and 𝑁b

cross = 9. Fig. 3 illustrates the decay of POD eigenvalues for each archetype component, showing a rapid
decrease in the POD eigenvalues for all components.

Third, we follow Algorithm 2 to create a bubble RB snapshot set for each archetype component using the data generated in the
first step and the RB constructed in the second step. Then, we solve the component-wise hyperreduction problem (24)–(28) for seven
different hyperreduction tolerances 𝛿𝑐 = {10−4, 10−3,… , 102} to construct a family of RQ rules. Fig. 4 shows components’ RQ points
for hyperreduction tolerances 𝛿𝑐 = 102 and 𝛿𝑐 = 1. Table 2 summarizes the outcome of offline training for all archetype components.
For all components, the number of bubble degrees of freedom is significantly reduced (i.e., 𝑁b

𝑐 ≪ b
𝑐 ), and the number of RQ points

increases as the hyperreduction tolerance 𝛿𝑐 tightens.

6.3. Thermal fin systems

We now examine the performance of the HRBE method on a family of thermal fin systems made of instances of rod, bracket,
and cross components from the library. An example of a 3 × 3 fin system is shown in Fig. 5(a). We characterize the topology of
the fin systems by their number of rod components along horizontal and vertical directions. We consider only the cases where the
number of horizontal and vertical rods are identical.

We assume the interior cross components of the fins are subject to a volumetric heat source. Furthermore, we assume the length
of the rods along all directions are identical. Additionally, we assume the horizontal and vertical thicknesses vary independently.
Hence, an 𝑁f in ×𝑁f in fin system has 𝑁comp = (3𝑁f in + 1) × (𝑁f in + 1) instantiated components, 𝑁f in + 1 thickness variables along the
horizontal direction, 𝑁f in+1 thickness variables along the vertical direction, 1 length variable associated with rod components, and
(𝑁 − 1)2 physical variables for volumetric source terms. Therefore, in total, an 𝑁 ×𝑁 fin system is parameterized by 𝑁2 + 4
16
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Fig. 4. RQ points of the archetype components for 𝛿𝑐 = 102 and 𝛿𝑐 = 1.
17
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Table 2
Outcome of offline training for all archetype components.

Component Rod Bracket Tee Cross

 b
𝑐 691 703 1026 1165

𝑄𝑐 1968 2016 3024 3456

𝑁b
𝑐 3 3 6 9

�̃�𝑟
𝑐 (𝛿𝑐 = 102) 147 156 230 296

�̃�𝑟
𝑐 (𝛿𝑐 = 10) 183 198 317 420

�̃�𝑟
𝑐 (𝛿𝑐 = 1) 203 265 391 563

�̃�𝑟
𝑐 (𝛿𝑐 = 10−1) 287 322 516 739

�̃�𝑟
𝑐 (𝛿𝑐 = 10−2) 347 375 637 956

�̃�𝑟
𝑐 (𝛿𝑐 = 10−3) 419 488 846 1233

�̃�𝑟
𝑐 (𝛿𝑐 = 10−4) 482 599 1031 1613

Fig. 5. A 3 × 3 fin system. In (a), red stars mark the components with a volumetric source term.

variables, making the problem parametrically high-dimensional even for 𝑁f in = 2. Fin systems are subject to four Dirichlet boundary
conditions: 𝑢lef t = 25 K on 𝛤lef t , 𝑢right = 125 K on 𝛤right , 𝑢bottom = 275 K on 𝛤bottom, and 𝑢top = 100 K on 𝛤top. Fig. 5(b) shows the truth
temperature distribution for one instantiation of the 𝑁f in ×𝑁f in fin system for 𝑁f in = 3.

6.4. Numerical results using prescribed hyperreduction tolerances

We first study the behavior of the HRBE method on the 3 × 3 fin system using prescribed hyperreduction tolerances 𝛿𝑐 ∀𝑐 ∈ ;
i.e., the same 𝛿𝑐 is prescribed to all components without using the adaptive algorithm (Algorithm 3). Fig. 6(a) shows the relative
𝐻1(𝛺)-norm error between the truth and HRBE solutions for different hyperreduction tolerances. To assess the generality of the
formulation, we report the maximum error over a test configuration set 𝛯 test ⊂ , which comprises |𝛯 test

| = 5 test configurations that
results from parameter values randomly selected from a uniform distribution over their corresponding training range. As expected,
the error decreases as the hyperreduction tolerances are reduced. A maximum error of 1.363 × 10−1 is observed for 𝛿𝑐 = 102, which
sharply decreases to 2.536×10−3 for 𝛿𝑐 = 1. The HRBE error eventually plateaus and approaches that of (truth-quadrature) RB without
hyperreduction. (We recall that, in this work, the RB is fixed independent of the hyperreduction tolerance for each component, and
hence the error between the truth and RB solutions (and in turn the HRBE solutions) is not adaptively controlled; cf. Remark 11.)

Fig. 6(b) shows the maximum relative 𝐻1(𝛺)-norm error between (truth-quadrature) RB and HRBE solutions over the |𝛯 test
| = 5

test cases for different 𝛿𝑐 values. As anticipated, the error decreases with hyperreduction tolerances and, hence, when more RQ
points are used. More quantitatively, the BRR error bound (10) suggests that

‖

‖

𝑢rb(𝜇) − �̃�rb(𝜇)‖‖ ≤ ‖

‖

𝐮rb(𝜇) − �̃�rb(𝜇)‖‖2
√

𝜆max ≤
2
√

𝜆max

𝜎
(

𝐉 (𝐮 (𝜇);𝜇)
)

‖

‖

‖

�̃�rb(𝐮rb(𝜇);𝜇)
‖

‖

‖2
.

18
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Fig. 6. Maximum relative 𝐻1(𝛺)-norm error in the HRBE solution with respect to the truth and RB solutions for different hyperreduction tolerances for the
3 × 3 fin over |𝛯 test

| = 5 test cases.

Table 3
Value of 𝜎min

(

𝐉rb(𝐮rb)
)

≡ 𝜎min

(

𝐉rb(𝐮rb(𝜇);𝜇)
)

for different hyperreduction tolerances for the 3 × 3 fin.

Hyperreduction
tolerances

𝛿𝑐 = 102 𝛿𝑐 = 10 𝛿𝑐 = 1 𝛿𝑐 = 10−1 𝛿𝑐 = 10−2 𝛿𝑐 = 10−3 𝛿𝑐 = 10−4

𝜎min

(

𝐉rb(𝐮rb)
)

2.697 2.927 2.932 2.933 2.933 2.933 2.933

Table 4
Relative error between 𝜎min

(

𝐉rb(�̃�rb(𝜇);𝜇)
)

and 𝜎min

(

𝐉rb(�̃�rb(𝜇);𝜇)
)

for different
hyperreduction tolerances for the 3 × 3 fin over |𝛯 test

| = 5 test cases.

Hyperreduction
tolerances

sup
𝜇∈𝛯 test

|𝜎min(𝐉rb(�̃�rb(𝜇);𝜇)) − 𝜎min(𝐉rb(�̃�rb(𝜇);𝜇))|
𝜎min(𝐉rb(�̃�rb(𝜇);𝜇))

𝛿𝑐 = 102 9.009 × 10−2

𝛿𝑐 = 10 3.017 × 10−3

𝛿𝑐 = 1 1.507 × 10−4

𝛿𝑐 = 10−1 1.057 × 10−5

𝛿𝑐 = 10−2 1.023 × 10−6

𝛿𝑐 = 10−3 6.818 × 10−7

𝛿𝑐 = 10−4 4.973 × 10−7

Then, assuming the residual-tolerance condition (15) holds for �̃�rb(𝜇) at the system level, we conclude that

‖

‖

𝑢rb(𝜇) − �̃�rb(𝜇)‖‖ ≤
2𝛿𝑐

√

𝜆max
∑

𝑐∈ 𝑁𝑀(𝑐)

𝜎min

(

𝐉rb(𝐮rb(𝜇);𝜇)
)

since the same 𝛿𝑐 is applied for all components. Hence, if 𝜎min

(

𝐉rb(𝐮rb(𝜇);𝜇)
)

remains approximately constant for different 𝛿𝑐 values,

then we expect the error to vary linearly with 𝛿𝑐 . This is precisely what we observe in Fig. 6(b). The values of 𝜎min

(

𝐉rb(𝐮rb(𝜇);𝜇)
)

reported in Table 3 confirm that the minimum singular value is approximately constant for 𝛿𝑐 ≤ 10.
We now study the behavior of the minimum singular value 𝜎min

(

𝐉rb(�̃�rb(𝜇);𝜇)
)

, which plays an important role in the adaptive

RQ selection in Algorithm 3. To develop the algorithm, we posited, based on Lemma 10, that 𝜎min

(

𝐉rb(�̃�rb(𝜇);𝜇)
)

would provide a

reliable approximation for 𝜎min

(

𝐉rb(�̃�rb(𝜇);𝜇)
)

. Table 4 shows the maximum relative error between these two values ∀𝜇 ∈ 𝛯 test for
different hyperreduction tolerances 𝛿𝑐 . We note that even for the highest 𝛿𝑐 the error between the singular values is less than 10% and
the difference quickly decreases as 𝛿𝑐 is reduced. Consequently, in practice, as Algorithm 3 iterates toward smaller hyperreduction
tolerances, this error becomes increasingly insignificant. Additionally, the applied factor of 0.5 due to (29) further mitigates the
possibility that 0.5𝜎min

(

𝐉rb(�̃�rb(𝜇);𝜇)
)

does not provide a lower bound of 𝜎min

(

𝐉rb(𝐮rb(𝜇);𝜇)
)

in Algorithm 3.
Fig. 7 shows the average speedup in wall-clock time relative to solving the truth problem across the five test configurations for

various hyperreduction tolerances. Specifically, an average speedup of around 70 times is observed for 𝛿𝑐 = 102, reducing to about
11 times for 𝛿 = 10−4. While the difference in speedups might encourage the use of looser hyperreduction tolerances, it is crucial
19
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Fig. 7. Average speedup in wall-clock time relative to solving the truth problem for different hyperreduction tolerances for the 3 × 3 fin across |𝛯 test
| = 5 test

cases.

to consider the trade-off in accuracy. We recall that Figs. 6(a) and 6(b) show that the errors for 𝛿𝑐 = 102 is significantly higher
than the errors for the RQ rules associated with tighter tolerances. Conversely, opting for the strictest tolerance yields the most
accurate HRBE solution, but the speedup is not as substantial compared to using looser tolerances. (We recall that, in this work, we
do not consider port reduction, and hence the speedup achieved by the HRBE method is (10)–(100) and not (1000) as achieved
by port-reduced RBEs for linear problems [15]; cf. Remark 1.)

6.5. Numerical results using the adaptive RQ selection algorithm

To effectively navigate the trade-off between speedup and accuracy and select the RQ rules satisfying a desired error between RB
and HRBE solutions, we now apply Algorithm 3 for the relative error target 𝜖 = 0.01. The algorithm finds the RQ rules corresponding
to different hyperreduction tolerances for different components in the 3 × 3 thermal fin system, although the same tolerance is
used for the components instantiated from the same archetype component. Convergence is reached in merely two iterations in all
parameter test configurations. The maximum relative 𝐻1(𝛺)-norm errors in the HRBE solutions relative to the truth and (truth-
quadrature) RB solutions are 7.521 × 10−3 and 7.226 × 10−3, respectively. As desired, the adaptive RQ selection algorithm meets the
target system-level hyperreduction error tolerance of 10−2. The HRBE method provides an average computational speedup of 42
relative to solving the truth problem.

To further assess the performance of the adaptive RQ selection algorithm across a range of fin system sizes, we apply Algorithm 3,
with the relative error target 𝜖 = 0.01, to 𝑁f in ×𝑁f in fin systems for 𝑁f in ∈ {2,… , 8}. For each fin system, we form |𝛯 test

| = 5 test
configurations similar to those for the 3 × 3 fin system described earlier. For all fin systems, the algorithm achieves convergence
within two iterations. Table 5 shows the maximum relative 𝐻1(𝛺)-norm errors across the test configurations between (i) truth
and RB solutions, (ii) truth and HRBE solutions, and (iii) RB and HRBE solutions. The target error between the RB and HRBE
solutions is achieved for all fin systems. The effectivity, defined as 𝜖 divided by the actual maximum relative error, ranges from a
minimum of 1.315 for 𝑁f in = 2 to a maximum of 33.602 for 𝑁f in = 8. The sharpness of the error bound between the RB and HRBE
solutions deteriorates as 𝑁f in increases. We suspect that this is due to bounding ‖⋅‖2 of the component residuals and Jacobians in
Proposition 6 by

√

𝑁𝑀(𝑐) ‖⋅‖∞ and 𝑁𝑀(𝑐) ‖⋅‖max ∀𝑐 ∈ , respectively. As the number of components in the system increases, �̄� in
Proposition 6 provides a more pessimistic upper bound for the error at the system level. Table 5 also shows that for all fin systems
the error between the truth and RB solutions is relatively close to the error between the truth and HRBE solutions, underscoring
the effectiveness of the adaptive RQ selection (Algorithm 3) as well as the component-wise hyperreduction training routine.

Finally, Table 6 presents the relative error between 𝜎min

(

𝐉rb(�̃�rb(𝜇);𝜇)
)

and 𝜎min

(

𝐉rb(�̃�rb(𝜇);𝜇)
)

across various fin system sizes,

which again supports the validity of using 𝜎min

(

𝐉rb(�̃�rb(𝜇);𝜇)
)

to approximate 𝜎min

(

𝐉rb(�̃�rb(𝜇);𝜇)
)

in Algorithm 3.

7. Conclusion

In this work, we have developed an HRBE method for reduced-order modeling of component-based systems governed by general
parameterized nonlinear PDEs. The proposed method is capable of accommodating global nonlinearities across the entire domain.
The method constructs a library of archetype components during the offline phase through component-wise RB construction and
hyperreduction. Then, in the online phase, these pretrained components are reused to rapidly create a reduced model for any system
configuration instantiated from the archetype components in the library. This divide-and-conquer strategy circumvents the need
20
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Table 5
Relative 𝐻1(𝛺)-norm error between (i) truth and RB solutions, (ii) truth and HRBE solutions, and (iii) RB and
HRBE solutions for 𝑁f in ×𝑁f in fins using 𝜖 = 0.01 in Algorithm 3 over their five test cases.

𝑁f in sup𝜇∈𝛯 test
‖𝑢ℎ (𝜇)−𝑢rb (𝜇)‖

‖𝑢ℎ (𝜇)‖
sup𝜇∈𝛯 test

‖𝑢ℎ (𝜇)−�̃�rb (𝜇)‖
‖𝑢ℎ (𝜇)‖

sup𝜇∈𝛯 test
‖𝑢rb (𝜇)−�̃�rb (𝜇)‖

‖𝑢rb (𝜇)‖

2 4.183 × 10−3 7.891 × 10−3 7.605 × 10−3

3 2.054 × 10−3 7.521 × 10−3 7.226 × 10−3

4 1.557 × 10−3 6.134 × 10−3 5.921 × 10−3

5 1.626 × 10−3 4.958 × 10−3 4.832 × 10−3

6 1.283 × 10−3 1.341 × 10−3 3.801 × 10−4

7 1.001 × 10−3 1.057 × 10−3 3.377 × 10−4

8 8.882 × 10−4 9.389 × 10−4 2.976 × 10−4

Table 6
Relative error between 𝜎min(𝐉rb(�̃�rb(𝜇);𝜇)) and 𝜎min

(

𝐉rb(�̃�rb(𝜇);𝜇)
)

for 𝑁f in ×𝑁f in fins over their five test cases.

𝑁f in sup
𝜇∈𝛯 test

|𝜎min(𝐉rb(�̃�(𝜇);𝜇)) − 𝜎min(𝐉rb(�̃�rb(𝜇);𝜇))|
𝜎min(𝐉rb(�̃�rb(𝜇);𝜇))

2 3.478 × 10−3

3 2.395 × 10−3

4 2.159 × 10−3

5 1.484 × 10−3

6 4.221 × 10−5

7 4.955 × 10−5

8 6.616 × 10−5

for repeated offline training for new system configurations and enables the reduced-order modeling of problems with numerous
parameters. Additionally, it facilitates the model reduction of large-scale problems by sidestepping the generation of global solution
snapshots associated with large assembled systems in the offline phase.

The proposed HRBE method is characterized by several key features. First, we have formulated a component-wise extension of the
QP [30,31] to systematically construct a library of hyperreduced components, each of which meets the specified hyperreduction
olerance. Second, we have appealed to the BRR theorem to develop an actionable error estimate for component-based systems,
hich relates component-wise hyperreduction residuals to the system-level error. Third, we have developed an online-efficient
stimate of the minimum singular value of the system-level Jacobian, which plays a crucial role in the BRR theorem. Finally, building
n the aforementioned multi-fidelity archetype component library, the actionable error estimate, and the minimum singular value
stimate, we have developed an adaptive RQ selection procedure, such that the hyperreduction error in the online-assembled system
eets the user-prescribed system-level error tolerance.

We evaluated the effectiveness of our HRBE method through its application to two-dimensional nonlinear thermal fin systems,
hich are composed from a library consisting of four distinct types of archetype components. Across different fin systems, we
emonstrated that the HRBE method consistently delivers accurate results and computational reduction, achieving roughly 45×

speedups with errors around 1% or less. Moreover, the online-efficient minimum singular value estimate for the system’s RB Jacobian
proved accurate in the fin systems studied.

There exist several potential opportunities to extend the current work. First is the development of a port-reduced version of
the HRBE method (cf. Remark 1). In systems with many and/or large global ports, the final HRBE problem can still be quite large
without port reduction. Hence, model reduction of the ports could lead to additional computational savings in the online phase,
a concept already explored for linear problems (e.g., [14–16]). Second is the development of an online-efficient system-level a
posteriori error estimates, which is another area that has been explored for linear problems. Third, building on the a posteriori
error estimate, Algorithm 3 may be extended to effect adaptive selection of both RB and RQ in the online phase (cf. Remark 11).
Lastly, the current work could be expanded to accommodate time-dependent nonlinear PDEs. We aim to explore these potential
extensions in our future research.
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ppendix. Explicit expressions of the algebraic RB and hyperreduced RB residuals and Jacobians of instantiated compo-
ents

We assume in each archetype component 𝑐 ∈ ̂, the generalized coordinates of any 𝑤rb,𝑐 ∈ rb,𝑐 are arranged in such a way that
the DoF associated with ̂b

rb,𝑐 are assigned to the first 𝑁b
𝑐 indices, followed by  1

𝑐 indices corresponding to the first local port’s DoF
nd so forth. As such, for the instantiated component 𝑐 ∈ , we introduce {𝛹𝑐,𝑖}

𝑁𝑀(𝑐)
𝑖=1 for any 𝜇𝑐 ∈ 𝑐 as

𝛹𝑐,𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜉b𝑐,𝑖 ≡ 𝜉b𝑀(𝑐),𝑖◦
−1
𝑐 (⋅;𝜇𝑐 ), 𝑖 ∈ {1,… , 𝑁b

𝑀(𝑐)},

𝜓1
𝑐,𝑖, 𝑖 ∈ 𝑁b

𝑀(𝑐) + {1,… , 1
𝑀(𝑐)},

⋮

𝜓
𝑛𝛾𝑀(𝑐)
𝑐,𝑖 , 𝑖 ∈ 𝑁b

𝑀(𝑐) +
∑
𝑛𝛾𝑀(𝑐)−1

𝑝=1  𝑝
𝑀(𝑐) + {1,… ,

𝑛𝛾𝑀(𝑐)
𝑀(𝑐) }.

The algebraic RB residual and Jacobian for 𝑐 ∈  are then given by

(

𝐑rb,𝑐 (𝑤rb,𝑐 ;𝜇𝑐 )
)

𝑖 =
𝑄𝑀(𝑐)
∑

𝑞=1
𝜌𝑀(𝑐),𝑞 �̂�𝑀(𝑐)

(

[

𝑤b
rb,𝑐 +

∑

𝑝∈𝑀(𝑐)

𝑤𝑝ℎ,𝑝
]

◦𝑐 (⋅;𝜇𝑐 ), 𝛹𝑐,𝑖◦𝑐 (⋅;𝜇𝑐 ); 𝑥𝑀(𝑐),𝑞 , 𝜇𝑐

)

,

(

𝐉rb,𝑐 (𝑤rb,𝑐 ;𝜇𝑐 )
)

𝑖,𝑗 =
𝑄𝑀(𝑐)
∑

𝑞=1
𝜌𝑀(𝑐),𝑞 �̂�

′
𝑀(𝑐)

( [

𝑤b
rb,𝑐 +

∑

𝑝∈𝑀(𝑐)

𝑤𝑝ℎ,𝑐
]

◦𝑐 (⋅;𝜇𝑐 ), 𝛹𝑐,𝑗◦𝑐 (⋅;𝜇𝑐 ), 𝛹𝑐,𝑖◦𝑐 (⋅;𝜇𝑐 ); 𝑥𝑀(𝑐),𝑞 , 𝜇𝑐
)

,

(32)

for 1 ≤ 𝑖, 𝑗 ≤ 𝑁𝑀(𝑐), any 𝑤rb,𝑐 ∈ rb,𝑐 and any 𝜇𝑐 ∈ 𝑐 .
Similarly, the algebraic hyperreduced RB residual and Jacobian for 𝑐 ∈  are given by

(

�̃�rb,𝑐 (𝑤rb,𝑐 ;𝜇𝑐 )
)

𝑖
=
�̃�𝑟𝑀(𝑐)
∑

𝑞=1

̃̂𝜌𝑟𝑀(𝑐),𝑞 �̂�𝑀(𝑐)

(

[

𝑤b
rb,𝑐 +

∑

𝑝∈𝑀(𝑐)

𝑤𝑝ℎ,𝑐
]

◦𝑐 (⋅;𝜇𝑐 ), 𝛹𝑐,𝑖◦𝑐 (⋅;𝜇𝑐 ); ̃̂𝑥𝑟𝑀(𝑐),𝑞 , 𝜇𝑐

)

,

(

𝐉rb,𝑐 (𝑤rb,𝑐 ;𝜇𝑐 )
)

𝑖,𝑗
=
�̃�𝑟𝑀(𝑐)
∑

𝑞=1

̃̂𝜌𝑟𝑀(𝑐),𝑞 �̂�
′
𝑀(𝑐)

( [

𝑤b
rb,𝑐 +

∑

𝑝∈𝑀(𝑐)

𝑤𝑝ℎ,𝑐
]

◦𝑐 (⋅;𝜇𝑐 ), 𝛹𝑐,𝑗◦𝑐 (⋅;𝜇𝑐 ), 𝛹𝑐,𝑖◦𝑐 (⋅;𝜇𝑐 ); ̃̂𝑥𝑟𝑀(𝑐),𝑞 , 𝜇𝑐
)

,

(33)

for 1 ≤ 𝑖, 𝑗 ≤ 𝑁𝑀(𝑐), any 𝑤rb,𝑐 ∈ rb,𝑐 and any 𝜇𝑐 ∈ 𝑐 .
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