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Conceptual design is the foundational stage of a design process that translates ill-defined
design problems into low-fidelity design concepts and prototypes through design search,
creation, and integration. In this stage, product shape design is one of the most paramount
aspects. When applying deep learning-based methods to product shape design, two major
challenges exist: (1) design data exhibit in multiple modalities and (2) an increasing
demand for creativity. With recent advances in deep learning of cross-modal tasks
(DLCMTs), which can transfer one design modality to another, we see opportunities to
develop artificial intelligence (AI) to assist the design of product shapes in a new paradigm.
In this paper, we conduct a systematic review of the retrieval, generation, and manipulation
methods for DLCMT that involve three cross-modal types: text-to-3D shape, text-to-sketch,
and sketch-to-3D shape. The review identifies 50 articles from a pool of 1341 papers in the
fields of computer graphics, computer vision, and engineering design. We review (1) state-
of-the-art DLCMT methods that can be applied to product shape design and (2) identify the
key challenges, such as lack of consideration of engineering performance in the early design
phase that need to be addressed when applying DLCMT methods. In the end, we discuss the
potential solutions to these challenges and propose a list of research questions that point to
future directions of data-driven conceptual design. [DOI: 10.1115/1.4056436]
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1 Introduction
The product shape is essential in the conceptual design of engi-

neered products because it can affect both the esthetics and the engi-
neering performance of a product [1]. Figure 1 shows the flow of
information and the key steps for the design of product shapes at
the conceptual design stage [1], where the information can be cate-
gorized into three modalities: natural language (NL) (e.g., text),
sketches (e.g., 2D silhouette), and 3D shapes (e.g., meshes). We
call them design modalities. Generally, customer needs and engi-
neering requirement documents are in the form of natural lan-
guages. Design sketches and drawings are effective ways of
brainstorming and expressing designers’ preferences. Low-fidelity
design concepts and prototypes from the conceptual design stage
are often represented by 3D shapes in digital format. Design
search, design creation, and design integration are the core steps
of conceptual design to gather information from existing design
solutions for inspiration and to develop novel design concepts to
better explore the design space [1].
Early design automation methods, such as grammar- and rule-

based methods, rely primarily on human design experience and
knowledge to generate design alternatives [2]. In contrast, deep learn-
ing methods can learn latent design representations from data without
explicit design rules or grammars, so they have been increasingly
adopted in many engineering design applications. So far, however,
deep learning methods have been applied mainly in the later stages
of engineering design for design automation [3]. It is challenging to
apply deep learning methods to the conceptual design stage (i.e.,

the early design stage) for several reasons. For example, data in the
conceptual design stage exhibit multiple modalities, but deep learning
methods are usually applied to handle a single design modality.
Moreover, in conceptual design, designers often gather a large set
of information for design inspiration in different design steps, but
deep learning methods tend to focus on one specific design task at
a time. Finally, human (either user or designer) input and interactions
are desired in conceptual design to improve design creativity and
human-centered design, but most current design methods developed
using deep learning do not interact directly with human data, but
only implicitly capture human preferences from training datasets, as
shown in Fig. 2.
With recent development in deep learning of cross-modal tasks

(DLCMT),2 we see the opportunities of applying these methods
to address the aforementioned challenges, particularly in product
shape design, such as car body and plane fuselage [5,6]. DLCMT
allows explicit human input in one design modality and translates
it to another modality, e.g., from natural language or sketches to
3D shapes, as shown in Fig. 2. In DLCMT, there are cross-modal
retrieval, generation, and manipulation methods. Cross-modal
retrieval methods can be used to search an existing design reposi-
tory for inspiring design ideas. Cross-modal generation methods
can be used to explore a design space to generate new design con-
cepts. Lastly, cross-modal manipulation methods can further edit
and manipulate existing designs to refine designs. These three
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2DLCMT is a class of problems, aiming to translate one modality of data to another,
e.g., from text to 3D shapes. To solve this problem, there is a large body of literature on
cross-modal representation learning (CMRL). CMRL aims to build embeddings using
information from multiple modalities (e.g., texts, audio, and images) in a common
semantic space, which allows the model to compute cross-modal similarity [4]. In
this paper, our review is not limited to reviewing CMRL methods but also includes
other deep learning methods that can solve cross-modal problems.
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categories of methods can be used in the design search, design cre-
ation, and design integration steps (Fig. 1), respectively. In this
paper, we conducted a systematic review of the state-of-the-art
methods for DLCMT. Through a close examination of the existing
literature, our objective is to identify the DLCMT methods and
technologies that can be used to facilitate the conceptual design
and the challenges associated with applying them.
A total of 50 recently published journal articles and conference

papers are identified and closely reviewed from the fields of com-
puter graphics, computer vision, and engineering design. We
focus on the text, sketches, and 3D shapes because they are the
main design modalities in conceptual design. Specifically, we
reviewed deep learning methods for three types of cross-modal
tasks: text-to-sketch, text-to-3D, and sketch-to-3D. We found that
most of the literature comes from computer graphics and computer
vision, with few attempts at engineering design applications. This
poses new challenges and opportunities for adapting the models
and techniques developed to solve engineering design problems
and, particularly, to bridge human input and interactions with

deep learning methods in the conceptual design of engineered
product shapes.
The remainder of this paper is organized as follows. Section 2

introduces background knowledge on conceptual design, design
modalities, and our motivation for the review. Section 3 presents
the methodology for our systematic review. We tabulate all the
reviewed articles and present four statistics from the literature in
Sec. 4. We then discuss the literature in detail and answer the
research questions (RQs) of the systematic review in Sec. 5. In
the end, we propose a list of six research questions that will
inform future research directions in Sec. 6 and conclude our work
with closing remarks in Sec. 7.

2 Background
2.1 Conceptual Design. Conceptual design lies in the early

phase of a design process in which the form and function of a
product are explored [7]. In conceptual design, it is crucial to

Fig. 1 Iterative conceptual design stage in the development of engineered products

Fig. 2 Deep learning-based design process with humans in the loop
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explore the design space as much as possible, and designers are
demanded to generate creative designs so that the products are
likely to succeed in the market [8,9]. As shown in Fig. 1, we
adapt and reinterpret the five-step concept generation method in
conceptual design [1]. The five steps are problem clarification,
design search, design creation, design integration, and reflection.
Through these five steps, the method transfers information, such
as customer needs, engineering requirements, and design ideas, to
design concepts in the form of sketches and 3D shapes. The corre-
sponding input and output of each step are represented by dotted
rectangles. The process is linear in sequence from left to right,
but almost always iterative. For example, feedback from reflection
could influence problem clarification and its subsequent steps. Each
design step can also be iterative so that the design problem can be
better understood, and the design space can be better explored [1].
In the conceptual design phase, the shape of a product is one of

the most important considerations that are influential on the esthet-
ics of a product and its engineering performance [1,10]. In this
paper, we focus primarily on reviewing the DLCMT methods that
can be applied for product shape design in the three concept gener-
ation steps, i.e., design search, design creation, and design integra-
tion, because they are the core steps for design concept exploration.

2.1.1 Design Search. Design search is the step of collecting
information on existing design solutions to a design problem. In
practice, several ways, such as patents, literature, and benchmark-
ing, can be used to gather useful information [1]. By analyzing
those existing products, designers can summarize their advantages
and disadvantages, so that they can make necessary and customized
changes to existing designs to create satisfying ones. However, the
repository of existing design options could be huge, so the search
process would be time-consuming and cumbersome, placing signif-
icant cognitive and physical burdens on designers. One possible
solution to this problem is to use an AI-assisted search process,
where designers can predefine search criteria and utilize computers
to search for relevant design solutions.

2.1.2 Design Creation. Design creation emphasizes exploring
novel design concepts. Designers brainstorm ideas and explore
the design space to create novel design concepts based on the
knowledge of designers [1]. Design ideas are often presented as
sketches and text descriptions during conceptual design [11]. Text
descriptions are used to document and describe designers’ ideas,
while sketches can help visualize design concepts, further triggering
creative design ideas [12–14]. Low-fidelity 3D models are then
created for better visualization and further development.
However, creating 3D models involves a lot of manual work and
could be time-consuming. To facilitate the creation of novel 3D
shapes, generative design methods can be used to automate the
process.

2.1.3 Design Integration. The design integration is the step
where designers aim to systematically integrate the information col-
lected from previous steps to generate the integrated design con-
cept(s) [1]. For product shape design, designers usually need to
edit and manipulate designs collected from the design search and
design creation steps. But, it can be challenging to modify these
designs computationally because their representations have certain
formats (e.g., a 3D shape in voxels or point clouds or a sketch of a
raster image). Some formats are not editable and must be translated
into other formats, such as mesh or B-rep. Therefore, automating
the modification with human inputs can significantly simplify the
process.

2.2 Modalities in Conceptual Design. As shown in Fig. 1,
there are three main design modalities: NL, sketches, and 3D
shapes in conceptual design. In an example of car body design, as
shown in Fig. 3, the three modalities could be “I want a red sedan
car” (NL), hand-sketching a car with desired features (sketch),
and then creating a computer-aided design (CAD) model of the
car (3D shape). NL allows people to convey and communicate
ideas and thoughts. It is also the primary means for documentation,
such as documentation of customer needs and engineering require-
ments. Sketches are often used to brainstorm design concepts
because sketching can stimulate designers’ creative imagination
[12–14]. Then, a 3D shape is often built to provide better visualiza-
tion and a low-fidelity prototype model for further evaluation and
development of a concept.
NL data are often in the format of the text, which is usually the

keyword in DLCMT methods. As shown in Table 1, there are
mainly three types of text used as input in DLCMT, which
are NLD, object names, and semantic keywords. 2D sketches can
be represented in multiple ways, such as a pixel image3 in static
pixel space and vector image in dynamic stroke coordinate space
[15,16]. There are also generally two types of 3D sketches in the lit-
erature, and we refer to them as type I and type II, respectively. Type
I: This kind of 3D sketch is represented in a 2D space. But compared
to regular 2D sketches, they look like 3D objects. Type II: the 3D
sketches that can be represented in a 3D space (either real or compu-
tational). Such a type of 3D sketch data can be captured and gener-
ated using virtual reality (VR) tools or motion sensing devices.
They can also be created using 3D sketching software (e.g., SOLID-
WORKS or AUTODESK). 3D shapes are typically built as B-rep models
using CAD software in engineering design. However, in computer
graphics and the 3D deep learning fields, 3D shapes are usually rep-
resented asmeshes, point clouds, and voxel grids. Compared toCAD
models, these 3D representations typically have lower fidelity with
fewer geometric details and structural information because (1)
coarse resolution might be used to represent the shapes due to the
limitations of computational resources [17,18], (2) certain represen-
tations are not good at representing geometric details and topological
structure by nature (e.g., point clouds; see Table 2 for more informa-
tion), and (3) the conversion of one representation to another might
lose geometric or topological information [19,20].

Fig. 3 Cross-modal tasks in conceptual design

Table 1 The text types of natural language data used in DLCMT
and the examples

Text type Examples

Natural language
descriptions (NLDs)

“It’s a round glass table with two sets of wooden
legs that clasp over the round glass edge”

Object names “chairs,” “cars,” “planes”
Semantic keywords “circular short,” “rectangular wooden”

3Images can include both sketches and natural photos. In the literature, we notice
that DLCMT methods of natural photos usually use “image” while the methods of
sketches use “sketch” as the keyword, respectively. Also, in engineering design,
sketches are usually considered as lines and strokes. To identify DLCMT methods
for engineering design, we exclude corresponding methods of “image.”
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2.3 Review Motivation. Our motivation for this literature
review is driven by the following two major challenges posed in
conceptual design. The recent advancement in DLCMT gives us
opportunities to address these challenges and bring new design
experiences in conceptual design.
Challenge 1: Multi-modalities. There are multiple design steps

(e.g., design search, design creation, and design integration) in
the conceptual design stage, which involve information and data
with different design modalities. Designers conduct design activi-
ties with different modalities during the conceptual phase to best
explore the design space and generate novel ideas [21,22].
Deep learning methods that can be used for design creation have

been the focus [3], but most of them are focused on handling a
single design modality as pointed out by Refs. [23,24]. Typically,
these methods use unimodal data of designs either in 2D [25–27]
or 3D [28–31]. In addition, there is a lack of either unimodal or
cross-modal methods that are useful for design search and design
integration [24].
But not until recently, we see studies in the engineering commu-

nity utilizing DLCMT to assist concept creation or design evalua-
tion [23,32,33]. DLCMT methods take into account multiple
design modalities, such as texts and sketches. There are retrieval,
generation, and manipulation methods for DLCMT and they can
be applied to different steps in conceptual design: (1) DLCMT
retrieval methods can be used for design search since they can
search existing data and return designs that best match the query
of users (e.g., returning several chairs given a query by sketch)
[34]; (2) generation methods (e.g., sketch-to-3D shape generation
methods [33,35]) can be used to automate the design creation
process; (3) manipulation methods can allow designers to modify
the designs from another design modality. For example, using a
text-to-3D manipulation method [36], designers can modify a 3D
design by providing a simple text description without direct manip-
ulation of the design, and this can significantly reduce the time for
the design modification.
Challenge 2: Creativity.Design creativity is critical in conceptual

design which can largely affect the success of a product in the
market. There are three main aspects (i.e., design novelty, contex-
tual information, and human–computer interaction) that should be
addressed for design creativity in the context of deep learning-based
design processes.

(1) Design novelty. Deep learning methods (e.g., variational
autoencoders (VAEs) and generative adversarial networks
(GANs)) can generate new data that are not seen in the train-
ing dataset but are still based on interpolation within the

boundary of the training data. Therefore, the new designs
generated from the deep learning-based design process
share great similarities with the existing ones used as training
data. To improve design creativity, there have been a few
deep learning-based methods that focus on developing
neural network architectures to generate creative designs
by enabling deep learning models’ extrapolating capabilities
[37,38]. These methods pose new opportunities for design
because they can generate truly novel designs.

(2) Contextual information. On the other hand, humans have
played an essential role in design creativity. However,
despite advances in the development of network architecture,
one observation is that human input and interaction are not
much emphasized in the deep learning-based design
process [3]. Burnap et al. [39] pointed out that a human’s per-
ception of the quality of the design concepts generated is
often not in agreement with their numerical performance
measures. The reason could be that in most deep
learning-aided design processes, designers can only pas-
sively select the preferred design concepts from a set of
computer-generated design options, but human designers
may have contextual information [40] on a design problem
which is hard to be captured by the training data.

(3) Human–computer interaction. As a result, there is a need to
actively involve designers in a deep learning-based design
process [3,10]. Some efforts in this regard have recently
been made in engineered product design. For example, the
method introduced by Valdez et al. [41] allows users to
manipulate the latent space vectors learned by a GAN
model to create preferred design options. Despite recent
advances, we believe that design creativity can be further
improved by involving humans in the design process to
allow more intuitive and natural human input (e.g., text
and sketch). Natural language and sketches are the most
common human input in conceptual design, and DLCMT
methods can intake these human inputs and transfer their
modalities from one to another to promote creativity. That
is manifested in the envisioned deep generative design
process with humans in the loop, as shown in Fig. 2. In
such a process, designers can continuously supplement
new design ideas during human–computer interaction to
guide computers to generate creative and feasible design
concepts.

In addition, there should be many design processes and applica-
tions that can be facilitated by DLCMT and we show three typical

Table 2 Comparison of pros and cons of the three representations to deep learning methods

3D representation Pros Cons

Voxels • The data structure in fourth-order tensor makes it easy to be
adapted in 3D convolution operations in deep learning
methods

• Can deal with 3D shapes with arbitrary topology

• Low visual quality
• High computational cost because the number of the 3D

representation parameters scale with the increase of spatial
resolution in cubes

• Cannot be directly used in engineering analyses (e.g., finite
element analysis (FEA)) for performance evaluation

Point clouds • Compatible with the output data format of common scanning
software

• Compact for data storage and management
• Can deal with 3D shapes with arbitrary topology

• Low visual quality
• No detailed geometric information about relationships between

points making it hard to convert to meshes
• Cannot be directly used in engineering analyses (e.g., FEA) for

performance evaluation
Meshes • High visual quality

• Compact for data storage and management
• Widely accepted 3D representation in computer graphics
• Compatible with downstream engineering software, such as

the FEA and computational fluid dynamics tools

• Discrete and disordered elements make it challenging to be
processed by deep learning methods

• Hard to deal with 3D shapes with arbitrary topology

Implicit
representation

• High visual quality
• Easy adaption to deep learning methods
• Compact for data storage and management
• Can deal with 3D shapes with arbitrary topology

• Need to use rendering techniques to extract the isosurface of the
3D shapes for visualization

• Cannot be directly used in engineering analyses (e.g., FEA) for
performance evaluation
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examples in Fig. 4. Design application 1: DLCMT methods can be
used to facilitate design democratization, allowing ordinary people
to customize designs based on individual preferences [42]. Design
application 2: There are also opportunities to develop AI-based
pedagogical tools to teach students or train novice designers, allow-
ing them to explore design alternatives with naive input, for
example, just a simple word [43]. Design application 3: Immersive
design uses VR, augmented reality (AR), and mixed reality (MR) to
create a realistic digital environment in which a user is virtually
immersed and can even physically interact with the digital environ-
ment [44]. The DLCMT methods can be integrated into immersive
design applications to enhance the design experience in human–
computer interaction.
In summary, DLCMTmethods are likely to introduce new oppor-

tunities to support and enhance activities in the conceptual design
stage for product shape design and beyond. We conduct a close
examination of the existing literature aiming to identify the existing
DLCMT methods and technologies that can be used for conceptual
product shape design and the challenges associated with applying
them. We will also discuss potential solutions to these challenges
and point out future research directions.

3 Methodology
This study adopts a systematic literature review approach [45]

with the procedure of formulating research questions for a review,
identifying relevant studies, evaluating the quality of the studies,
summarizing the studies, and interpreting the findings.

3.1 Research Questions. We are motivated to ask two RQs
according to the discussion above.
RQ 1.What DLCMT methods can be used in the following three

steps of conceptual design?

(1) Design search
(2) Design creation
(3) Design integration

RQ 2. What are the challenges in applying DLCMT to concep-
tual design and how can they be addressed?

3.2 Literature Search

3.2.1 Content Scope and Keywords. We defined the content
scope using the following three criteria to search the literature

relevant to DLCMTs: (1) conceptual design: design search,
design creation, and design integration steps (highlighted in
Fig. 1). (2) Shape design: discrete, physical, and engineered prod-
ucts. (3) Design modality: text, sketch, and 3D shape.
The keywords identified and used in the literature search process

are “text-to-sketch retrieval,” “text-to-sketch generation,”
“text-to-shape retrieval,” “text-to-shape generation,” “sketch-based
3D shape retrieval,” and “sketch-based 3D shape generation.” For
“sketch-based 3D shape generation,” we include the other three
commonly used names: “sketch-based 3D shape reconstruction,”
“sketch-based 3D shape synthesis,” and “3D shape reconstruction
from sketches.”
The reasons for choosing these keywords come from the follow-

ing aspects. (1) DLCMT between two different modalities of text,
sketch, and 3D shape should have six permutations of cross-modal.
In this paper, we focus on the following three cross-modal tasks:
text-to-sketch, sketch-to-3D shape, and text-to-3D shape, which
are then concatenated with retrieval or generation to form the
initial keywords (e.g., text-to-sketch generation). We did not
include sketch-to-text, 3D shape-to-sketch, and 3D shape-to-text
because sketches or 3D shapes are often the most common artifacts,
and the design information flows in an order of text, sketches, and
3D shapes during the conceptual design. (2) We focus on design
search which corresponds to retrieval methods, design creation
which corresponds to generation methods, and design integration
which corresponds to manipulation methods.4 In addition, for the
sketch-to-3D shape retrieval or generation methods, we made
some modifications to the keywords according to the naming con-
vention in the literature (see a comprehensive review on deep learn-
ing methods for free-hand sketch [15]). For example, we used
“sketch-based 3D shape retrieval” instead of “sketch-to-3D shape
retrieval” and the other three common terms introduced previously.

3.2.2 Literature Search Process. As shown in Fig. 5, we
finally selected 50 articles that meet our scope of review. Searches
were conducted on the main databases of the literature (i.e., the
source scope): ScienceDirect, Web of Science, Scopus,

Fig. 4 Potential design applications enabled by DLCMT: (a) democratization of product design, (b) AI-based pedagogical tools
for educating and training students or novice designers, and (c) immersive design environment

4We did not explicitly search for cross-modal manipulation methods because these
methods cannot be found directly using specific keywords, but can be indirectly iden-
tified during the search for cross-modal retrieval and generation methods. For example,
we found the work Text2Mesh [36], using the keyword “text-to-shape generation”
because that keyword appears in the literature review section of the article, but the
work should belong to manipulation methods after carefully reading its content.
However, this might leave room for a more comprehensive review of the cross-modal
manipulation methods by developing a different search strategy in the future.
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IEEExplore, Association for Computing Machinery (ACM) Digital
Libraries, and Google Scholar within the time range of Jan. 2013 to
Jun. 2022 (i.e., the time scope: the studies published in the past 10
years). The reason for choosing that time range is that many signif-
icant improvements in deep learning methods occurred after 2013,
for example, VAEs (2013) [46] and GANs (2014) [47]. Since then,
they have been widely applied in various applications, including the
cross-modal tasks reviewed in this paper.
The initial search yielded 1341 seed articles, including duplicates,

of which the majority (i.e., 1304 papers) is related to two categories:
sketch-based 3D shape retrieval and generation, with only 37 articles
for the other four categories (i.e., text-to-sketch retrieval: 0;
text-to-sketch generation: 3; text-to-3D shape retrieval: 10;
and text-to-3D shape generation: 24) (see details in Table 3 in Appen-
dix A). To make the review manageable, for the two categories of
sketch-to-3D works, we decided to identify the most influential
studies from those 1304 papers using Connected Papers.5 We
found that Refs. [35,48] are pioneering work for deep learning-based
sketch-to-3D shape retrieval and generation, respectively [24].

Therefore, they were used as the origin papers to find their most rel-
evant work via Connected Papers (see Fig. 11 in Appendix A for the
two generated graphs). The search by Connected Papers identified 21
articles including Refs. [35,48] that meet our content scope.
Another finding was that the publication year of the articles in the

two literature graphs turned out to be up to 2020, which could indi-
cate that relevant articles published after 2020 have not gained
enough attention to be considered influential by Connected
Papers. The finding motivated us to further find the most recent
studies for these two categories, so we decided to search relevant
articles within the time range from Jan. 2021 to Jun. 2022 in
Google Scholar only, because we found that Google Scholar is
more inclusive compared to other databases (i.e., the results from
other databases turn out to be a subset of the results obtained
from Google Scholar. See the comparison in Table 3 in Appendix
A). Hundred and thirty eight articles were found in this search
process. In total, 196 papers were found to merit close examination
and review.
We then reviewed the titles and abstracts of all these articles to

judge their relevance to our content scope. We excluded 12 pre-
prints, one Master thesis, and one Ph.D. dissertation from those
196 papers because the preprints are not peer-reviewed or officially
published. Finally, 50 articles were considered the most relevant
and therefore closely reviewed.

Fig. 5 Literature search process

Table 3 Studies found in major databases using keywords of “text-to-sketch retrieval” (TSkRet), “text-to-sketch generation” (TSkG),
“text-to-shape retrieval” (TShRet), “text-to-shape generation” (TShG), “sketch-based 3D shape retrieval” (SkShRet), “sketch-based
3D shape generation” (SkShG), “sketch-based 3D shape reconstruction” (SkShRec), “sketch-based 3D shape synthesis”
(SkShSyn), and “3D shape reconstruction from sketches” (ShRecSk)

Keywords (double quotation marks included)

TSkRet TSkG TShRet TShG SkShRet SkShG SkShRec SkShSyn ShRecSk

Database ScienceDirect 0 0 0 0 2 0 0 0 0
Web of Science 0 0 1 0 20 1 0 0 1
Scopus 0 0 1 1 454 5 1 0 95
IEEExplore 0 0 0 1 13 1 1 0 1
ACM Digital Libraries 0 0 1 0 14 0 0 0 3
Google Scholar 0 3 7 22 559 (96) 7 (5) 5 (2) 1 (0) 120 (35)

Total 0 3 10 24 1062 14 7 1 220

5https://www.connectedpapers.com/. Connected Papers allow readers to enter an
origin paper and can generate a graph of papers with the strongest connections to
the origin paper by analyzing about 50,000 research papers.
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4 Summary Statistics of the Literature
We summarized all 50 articles in terms of the following vari-

ables: method type, publication year, representation of design
modalities, training dataset(s), object class of the training data, gen-
eralizability, user interface, user study, and publication source in
Table 4 of Appendix B which provides a complete list of these arti-
cles and the corresponding values for each of these variables. We
report the statistics of four variables here, including the type of
DLCMT, user interface, user study, and publication source, as an
example, and introduce the others in detail in Sec. 5.
We did not find any work related to text-to-sketch retrieval, pos-

sibly due to the lack of interest in practical applications.We obtained
two articles for text-to-3D shape retrieval, six articles for text-to-3D
shape generation, four articles for text-to-sketch generation, 19 arti-
cles for sketch-to-3D shape retrieval, 18 articles for sketch-to-3D
generation, and five articles for cross-modal design manipulation.
Among these works, Ref. [17] can work for text-to-3D shape
retrieval and generation; Ref. [50] can perform text-to-3D shape gen-
eration and manipulation; Refs. [6,51] are shown to be capable of
sketch-to-3D shape generation and manipulation.
Only 15 peer-reviewed publications are relevant to text-to-3D

shape retrieval, text-to-3D shape generation, text-to-sketch genera-
tion, and cross-modal design manipulation, but we observe a recent
surging interest in these topics especially text-related ones, possibly
due to advances in natural language processing (e.g., contrastive
language-image pretraining (CLIP) [52]) since our preliminary liter-
ature review [24].
There are 13 studies [6,32,44,53–62] that provide user interfaces.

The user interface application serves as a way to show the effective-
ness of the proposed deep learning approach, which can also better
facilitate human–AI interaction for creative designs. Especially,
Refs. [44,62] provide user interfaces in VR and AR settings,
respectively, which can further improve the user experience of
human–computer interaction in immersive design. Additionally,
12 studies [35,36,44,53,54,56–61,63] conducted user studies to
further validate their methods and user applications. User studies
can serve as a way to hear from human users so that researchers
can improve the proposed methods from users’ feedback. It can
also help study human–computer interaction in a real situation.
The articles reviewed are from conference proceedings (32) and

journals (18). Most DLCMT methods come from the domains of
computer science and computer engineering with only two papers
[32,33] from the engineering design community.

5 Review and Discussion
In this section, we summarize our review of the papers in each of

the cross-modal task categories and discuss their technical details,
from which we draw insights into the challenges and opportunities
of applying such methods in the engineering design field and
discuss potential solutions to the challenges.

5.1 RQ 1-(1): What DLCMT Methods Can Be Used in
Design Search of Conceptual Design?

5.1.1 Text-to-3D Shape Retrieval. The history of text-to-3D
shape retrieval methods can be traced back to Min et al. [64],
who used pure text information (query text and description associ-
ated with 3D shapes) for the 3D retrieval task, which is essentially a
text–text matching.
For state-of-the-art deep learning methods as we introduce below,

it is a common strategy to learn a cross-modal representation for text
and 3D shapes using cross-modal representation learning tech-
niques (see Ref. [4] for more information). Figure 6(a) demonstrates
the process of a text-to-3D retrieval task. As a pioneering and rep-
resentative work for this task, Chen et al. [17] first constructed a
joint embedding of text and 3D shapes using an encoder composed
of a convolution neural network (CNN) and a recurrent neural
network (RNN) on text data and a 3D-CNN encoder on 3D voxel

shapes. A triplet loss was applied and learning-by-association
[65] was used to align the embedded representations of text and
3D shapes. They also introduced a 3D-text cross-modal dataset
including two sub-datasets: (1) ShapeNet [49] (chairs and tables
only) with a natural language description and (2) geometric primi-
tives with synthetic text descriptions. However, the computational
cost caused by the cubic complexity of 3D voxels limits this
method to the machine learning of low-resolution voxels. Conse-
quently, the learned joint representations will have low discrimina-
tive ability. Han et al. [66] built a Y2Seq2Seq network architecture
using a gated recurrent unit (GRU, one variation of RNN) to encode
features of multiple-view images to represent the shape. To obtain
the joint embedding of text and sketches, they trained the network
using both intermodality and intramodality reconstruction losses,
in addition to the triplet loss and classification loss. Therefore, the
proposed network could learn more discriminative representations
than Ref. [17].

5.1.2 Sketch-to-3D Shape Retrieval. Sketch-to-3D shape
retrieval has been extensively studied using non-deep learning
methods [68]. These methods usually consist of three steps: (1)
automatically select multiple views from a given 3D shape in the
hope that one of them is similar to the input sketch(es); (2)
project the 3D shape into 2D space from the selected viewpoints;
and (3) match the sketch against the 2D projections based on prede-
fined features. However, the selection of best viewpoints, as well as
the design of predefined matching features, could be subjective and
random, which motivates the development of deep learning-based
methods that can avoid the subjective selection of views and
learn features from the data of sketches and 3D shapes [48]. In
light of the scope of this review, we focus on deep learning
methods for sketch-to-3D shape retrieval.
Wang et al. [48] initialized the effort and proposed to learn

feature representations for sketch-to-3D shape retrieval as shown
in Fig. 7, which avoided computing multiple views of a 3D
model. They applied two Siamese CNNs [69] for views of 3D
shapes and sketches, respectively, and a loss function defined on
the within-domain and cross-domain similarities. To reduce the dis-
crepancies between the sketch features and the 3D shape features,
Zhu et al. [70] built a pyramid cross-domain neural network of
sketches and 3D shapes. They used the network to establish a
many-to-one relationship between the sketch features and a 3D
shape feature. Dai et al. [71,72] proposed a novel deep correlated
holistic metric learning method with two distinct neural networks
for sketch and 3D shape. Such a deep learning method mapped fea-
tures from both domains into one feature space. In the construction
of its loss function, both discriminative loss and correlation loss
were used to increase the discrimination of features within each
domain and the correlation between domains. Chen and Fang
[73] developed a GAN-based deep adaptation model to transform
sketch features into 3D shape features, of which correlations can
be enhanced by minimizing the mean discrepancy between
modes. Xia et al. [74] proposed a novel semantic similarity metric
learning method based on a “teacher–student” strategy by using a
teacher network to guide the training of the student network. The
teacher network was trained to extract the semantic features of the
3D shapes. The student network was then trained using the pre-
learned 3D shape features to learn the sketch features. Similarly,
Yang et al. [75] applied a sequential learning strategy to learn 3D
shape features without 2D sketches first and then used the learned
features of 3D shapes to guide the learning of sketch features.
During the query process, they further integrated clustering algo-
rithms to categorize subclasses in a shape class to improve retrieval
accuracy. In the methods mentioned above, deep metric learning
[76] was applied to mitigate the modality discrepancy between
the sketch and the 3D shape.
There are also methods that study how to represent 3D shapes

more comprehensively so that 3D shapes can better correspond to
sketches. Xie et al. [77] proposed a method to learn a Wasserstein
barycenter of CNN features extracted from 2D projections of a
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Table 4 Summary of the literature

Type of
DLCMT Reference Year Method Text type Sketch type

3D
representation Dataset Object class

Generalizability
beyond trained

classes
User

interface
User
study

Publication
source

Text to 3D
shape retrieval

Han et al. [66] 2019 CNN and GRU NLD N/A Voxel 3D-text dataset [17] Chairs and
tables

No No No Conference:
AAAI

Chen et al.
[17]

2018 Text encoder (CNN, GRU) and
shape encoder (3D-CNN)

NLD N/A Voxel Proposed a 3D-text
dataset based on
ShapeNet [49]

Chairs,
tables, and
synthetic
objects

No No No Conference:
ACCV

Text to 3D
shape
generation

Jain et al.
[102]

2022 Network based on CLIP [52] NLD N/A NeRF [103] Common objects in
context (COCO) [139]

Diverse
classes

Yes No No Conference:
CVPR

Sanghi et al.
[43]

2022 Network based on PointNet
[126], CLIP [52], and OccNet
[98]

Object
names

N/A Voxel ShapeNet [49] Diverse
classes

No No No Conference:
CVPR

Liu et al. [50] 2022 Shape autoencoder, word-level
spatial transformer, and shape
generator (implicit maximum
likelihood estimation (IMLE)
[140])

NLD N/A Implicit
representation,
mesh

3D-text dataset [17] Chairs and
tables

No No No Conference:
CVPR

Jahan et al.
[93]

2021 Shape encoder and decoder
label regression network,

Semantic
keywords

N/A Implicit
representation,
mesh

COSEG [94] and
ModelNet [95]

Chairs,
tables, and
lamps

No No No Journal: CGF

Li et al. [97] 2020 GAN-based network NLD N/A Voxel 3D-text dataset [17] Chairs and
tables

No No No Conference:
ICVRV

Chen et al.
[17]

2018 Text encoder (CNN, GRU),
shape encoder (3D-CNN), and
GAN

NLD N/A Voxel Proposed a 3D-text
dataset based on
ShapeNet [49]

Chairs,
tables, and
synthetic
objects

No No No Conference:
ACCV

Text to sketch
generation

Yuan et al.
[63]

2021 GAN and Bi-Long short term
memory (LSTM)

NLD Static pixel
space

N/A Proposed SketchCUB
based on CUB [106]

Birds No No Yes Conference:
CVPR

Huang et al.
[54]

2020 Composition proposer
(transformer) and object
generator (Sketch-RNN [16])

NLD Dynamic
stroke
coordinate
space

N/A CoDraw [141] Diverse
classes

Yes Yes Yes Conference:
IUI

Huang and
Canny [53]

2019 Scene composer (transformer)
and object sketcher
(Sketch-RNN [16])

NLD Dynamic
stroke
coordinate
space

N/A Visual Genome [107]
and Quick, Draw!
[108]

Diverse
classes

Yes Yes Yes Conference:
UIST

Wang et al.
[105]

2018 GAN-based network NLD Static pixel
space

N/A Proposed Text2Sketch
based on dataset [142]

Human faces No No No Conference:
ICIP

Sketch to 3D
shape retrieval

Qin et al. [32] 2022 Generative Recursive
Autoencoders for Shape
Structures (GRASS) [143] and
k-nearest neighbors

N/A Static pixel
space

B-Rep Proposed a CAD
model-sketches dataset

Diverse
classes

Yes Yes No Journal: AEI

Yang et al.
[75]

2022 3D model network and 2D
sketch network (MVCNN [84])

N/A Static pixel
space

Mesh SHREC13 [82],
SHREC14 [83], and
SHREC16 [91]

Diverse
classes

Yes No No Journal: MS

Qi et al. [34] 2021 Sketch encoder and shape
encoder (MVCNN [84])

N/A Static pixel
space

Mesh Proposed a fine-grained
dataset based on
ShapeNet [49]

Chairs and
lamps

No No No Journal: TIP
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Table 4 Continued

Type of
DLCMT Reference Year Method Text type Sketch type

3D
representation Dataset Object class

Generalizability
beyond trained

classes
User

interface
User
study

Publication
source

Manda et al.
[86]

2021 MVCNN [84], Group-View
Convolutional Neural Networks
(GVCNN) [144], RotationNet
[145], and Multiview
convolutional neural networks
with Self Attention
(MVCNN-SA) [146]

N/A Static pixel
space

B-Rep Proposed
CADSketchNet based
on ESB [87] and MCB
[88]

Diverse
classes

Yes No No Journal: CG

Liang et al.
[80]

2021 Sketch network and view
network

N/A Static pixel
space

Mesh SHREC13 [82] and
SHREC14 [83]

Diverse
classes

Yes No No Journal: TIP

Liu and Zhao
[81]

2021 MVCNN [84] and guidance
cleaning network

N/A Static pixel
space

Mesh SHREC13 [82] and
SHREC14 [83]

Diverse
classes

Yes No No Conference:
ICCEIA-VR

Xia et al. [74] 2021 Student network and teacher
network (MVCNN [84])

N/A Static pixel
space

Mesh SHREC13 [82] Diverse
classes

Yes No No Conference:
ICCS

Li et al. [55] 2021 CNN-based network N/A Type II 3D
sketch

Mesh SHREC16STB [89] Diverse
classes

Yes Yes No Journal:
MTA

Navarro et al.
[85]

2021 CNN-based network N/A Static pixel
space

Mesh Proposed a line
drawing dataset based
on ShapeNet [49]

Diverse
classes

Yes No No Journal: CGF

Chen et al.
[78]

2019 Sketch network, segmented
stochastic-viewing shape
network, and view attention
network

N/A Static pixel
space

Mesh SHREC13 [82],
SHREC14 [83], and
PART-SHREC14
[147]

Diverse
classes

Yes No No Conference:
CVPR

Dai et al. [71] 2018 Source domain network and
target domain network (3D-
scale-invariant feature
transform (SIFT) [148])

N/A Static pixel
space

Mesh SHREC13 [82],
SHREC14 [83], and
SHREC16 [91]

Diverse
classes

Yes No No Journal: TIP

Chen and
Fang [73]

2018 MVCNN [84], GAN, metric
network, and cross-modality
transformation network

N/A Static pixel
space

Mesh SHREC13 [82] and
SHREC14 [83]

Diverse
classes

Yes No No Conference:
ECCV

Sketch to 3D
shape retrieval

Dai et al. [72] 2017 Source domain network and
target domain network
(3D-SIFT [148])

N/A Static pixel
space

Mesh SHREC13 [82] and
SHREC14 [83]

Diverse
classes

Yes No No Conference:
AAAI

Xie et al. [77] 2017 CNN and metric network N/A Static pixel
space

Mesh SHREC13 [82] and
SHREC14 [83]

Diverse
classes

Yes No No Conference:
CVPR

Zhu et al. [70] 2016 Cross-domain neural network
and pyramid cross-domain
network

N/A Static pixel
space

Mesh SHREC14 [83] Diverse
classes

Yes No No Conference:
AAAI

Ye et al. [89] 2016 CNN-based network N/A Type II 3D
sketch

Mesh Proposed
SHREC16STB

Diverse
classes

Yes No No Conference:
ICPR

Wang et al.
[48]

2015 CNN and Siamese network N/A Static pixel
space

Mesh PSB [67], SHREC13
[82], and SHREC14
[83]

Diverse
classes

Yes No No Conference:
CVPR

Sketch and
text to 3D
shape retrieval

Stemasov
et al. [62]

2022 Flask representation state
transfer and HoloLens

NLD Type II 3D
sketch

Mesh and voxel Thingiverse and
MyMiniFactory

Diverse
classes

Yes Yes No Conference:
CHI

Giunchi et al.
[44]

2021 CNN-based network NLD Type II 3D
sketch

Mesh Proposed a variational
chairs dataset based on
ShapeNet [49]

Chairs No Yes Yes Conference:
IMX

Sketch to 3D Li et al. [33] 2022 N/A Mesh Dataset [149] Cars and cups No No No Journal: JMD
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Table 4 Continued

Type of
DLCMT Reference Year Method Text type Sketch type

3D
representation Dataset Object class

Generalizability
beyond trained

classes
User

interface
User
study

Publication
source

shape
generation

Target-embedding variational
autoencoder

Static pixel
space

Nozawa et al.
[20]

2022 GAN and lazy learning N/A Static pixel
space

Point cloud and
mesh

ShapeNet [49] Cars No No No Journal: VC

Du et al. [59] 2021 CNN, OccNet [98], and
3D-CNN

N/A Static pixel
space

Implicit
representation
and mesh

PartNet [150] Chairs,
tables, and
lamps

No Yes Yes Journal: CGF

Wang et al.
[118]

2021 Sketch component
segmentation network,
transformation network, and
VAE

N/A Static pixel
space

Point cloud and
mesh

Dataset [35] Characters,
airplanes, and
chairs

No No No Journal:
WCMC

Guillard et al.
[6]

2021 Encoder (MeshSDF [151]),
decoder, and differential
renderer

N/A Static pixel
space

Implicit
representation
and mesh

ShapeNet [49] Cars and
chairs

No Yes No Conference:
ICCV

Sketch to 3D
shape
generation

Zhang et al.
[120]

2021 View-aware generation
network (encoder and decoder)
and discriminator

N/A Static pixel
space

Mesh ShapeNet-Sketch
[152], Sketchy [153],
and TuBerlin [154]

Diverse
classes

Yes No No Conference:
CVPR

Yang et al.
[115]

2021 CNN-based network N/A Static pixel
space

Mesh Archive of motion
capture as surface
shape (AMASS) [155]

Human
bodies

No No No Conference:
MMM

Luo et al. [60] 2021 Voxel-aligned implicit network
and pixel-aligned implicit
network

N/A Static pixel
space

Implicit
representation
and mesh

Proposed
3DAnimalHead

Animal heads No Yes Yes Conference:
UIST

Jin et al. [51] 2020 VAE N/A Static pixel
space

Voxel and mesh PSB [67] and
benchmark [156]

Diverse
classes

Yes No No Conference:
I3D

Smirnov et al.
[5]

2020 CNN-based network N/A Static pixel
space

B-Rep and mesh ShapeNet [49] Diverse
classes

No No No Conference:
ICLR

Nozawa et al.
[19]

2020 Encoder–decoder and lazy
learning

N/A Static pixel
space

Point cloud an
mesh

ShapeNet [49] Cars No No No Conference:
VISIGRAPP

Smirnov et al.
[122]

2019 CNN-based network N/A Static pixel
space

B-Rep and mesh ShapeNet [49] Diverse
classes

No No No Conference:
ICLR

Delanoy et al.
[114]

2019 CNN-based network N/A Type I 3D
sketch

Voxel COSEG [94] Chairs, vases,
and synthetic
shapes

No No No Journal: CG

Wang et al.
[121]

2018 Autoencoder and GAN N/A Static pixel
space

Voxel SHREC13 [82] and
ShapeNet [49]

Chairs No No No Conference:
MM

Li et al. [56] 2018 DFNet (encoder–decoder) and
GeomNet (encoder–decoder)

N/A Static pixel
space

Mesh Dataset [35] Characters No Yes Yes Journal: TOG

Delanoy et al.
[57]

2018 Singleview CNN and updater
CNN

N/A Type I 3D
sketch

Voxel COSEG [94] Chairs, vases,
and synthetic
shapes

No Yes Yes Journal:
PACMCGIT

Lun et al. [35] 2017 Encoder and multiview decoder N/A Static pixel
space

Point cloud and
mesh

The Models Resource
and ShapeNet [49]

Characters,
airplanes, and
chairs

No No Yes Conference:
3DIMPVT

Han et al. [58] 2017 Deep regression network N/A Static pixel
space

Mesh Faceware-house [117] Face
caricatures

No Yes Yes Journal: TOG

Text to 3D Liu et al. [50] 2022 Shape autoencoder, word-level NLD N/A Implicit 3D-text dataset [17] Chairs and
tables

No No No Conference:
CVPR
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3D shape. They constructed the metric network to map sketches and
the Wasserstein barycenters of 3D shapes to a common deep feature
space. Then a discriminative loss was formulated to learn the deep
features. The deep features learned could then be used for the
sketch-to-3D shape retrieval. Chen et al. [78] proposed a novel sto-
chastic sampling method to randomly sample rendering views of the
sphere around a 3D shape and incorporated an attention network
(see Ref. [79] for a comprehensive review) to exploit the importance
of different views. They also developed a novel binary coding strat-
egy to address the time-efficiency issue of sketch-to-3D shape
retrieval.
Another direction to reduce the large cross-modality difference

between 2D sketches and 3D shapes is to deal with noise in the
sketch data. Liang et al. [80] pioneered this direction by developing
a method called noise-resistant sketch feature learning with uncer-
tainty, which achieved the new state-of-the-art for sketch-based
3D shape retrieval. Liu et al. [81] proposed a guidance cleaning
network to remove low-quality sketches that have much noise,
which is like a data cleaning process. The authors showed superior
results over state-of-the-art methods because the learning of noisy
data was suppressed.
All the methods introduced above achieve state-of-the-art results

on commonly used sketch-to-3D retrieval datasets, such as prince-
ton shape benchmark (PSB) [67], SHREC13 [82], and SHREC14
[83]. The multiview CNN (MVCNN) [84] has been widely used
in all these methods to generate features from projection images
of 3D shapes. Different from these methods aiming to retrieve
objects by coarse category-level retrieval of 3D shapes given an
input sketch, Qi et al. [34] introduced a novel task of fine-grained
instance-level sketch-to-3D shape retrieval, with the aim of retriev-
ing one specific 3D shape that best matches the input sketch. They
created a set of paired sketch-to-3D shape data of chairs and lamps
from ShapeNet [49]. Then, they built a deep joint embedding
learning-based model with a novel cross-modal view attention
module to learn the features of sketches and 3D shapes. As the
first effort to find local image correspondences between design
sketches, Navarro et al. [85] proposed a synthetic line drawing
dataset rendered from 3D shapes from ShapeNet [49]. The
authors obtained a learned descriptor, namely, SketchZoom
descriptor, for dense registration in line drawings and showed its
promising application in sketch-3D shape retrieval by identifying
local correspondences between sketches.
There is also interest in using CAD data in 3D shape retrieval.

Qin et al. [32] developed a sketch-to-3D CAD shape retrieval
approach using the VAE and structural semantics. They created
their training dataset by collecting 3D CADmodels from local com-
panies and obtained their six-view projections as sketch data.
Manda et al. [86] developed a new sketch-3D CAD model
dataset, CADSketchNet, from the engineering shape benchmark
(ESB) [87] and mechanical components benchmark (MCB) [88]
datasets. The authors also analyzed various deep learning-based
sketch-to-3D retrieval approaches using the proposed dataset and
reported the comparison results.
Efforts have also been made to bridge the semantic gap between

sketches and 3D shapes to improve sketch-based 3D shape retrieval.
Ye et al. [89] presented a CNN-based 3D sketch-based shape
retrieval (CNN-SBR) architecture based on 3D sketch (Type II)
data obtained from SketchANet [90]. Using data augmentation to
prevent overfitting, they achieved a significant improvement com-
pared to other learning-based methods. Building on previous
work [89,91], Li et al. [55] proposed a novel interactive application
supported by CNN-SBR. The method used Microsoft Kinect, which
can track the 3D locations of 20 joints of a human body, to track the
3D locations of a user’s hand to create a 3D sketch. The proposed
method was tested on a proposed dataset and achieved
state-of-the-art performance in 3D sketch-based 3D shape retrieval.
The idea of utilizing a 3D sketch (type II) as query input has been

further applied to VR and AR settings to facilitate the immersive
design. Building on the method proposed in Ref. [92], Giunchi
et al. [44] designed a multimodal interface for 3D model retrieval
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in VR with both sketch and voice input. The authors implemented a
consistent translation method between queries of 3D sketch and
voice, allowing their integration during a single search session.
Similarly, ShapeFindAR [62] combined both 3D sketch and
textual input to enable in situ spatial search of a 3D model reposi-
tory in an AR setting. The server was built using a representation
state transfer application programming interface provided by
Flask, a web framework for the PYTHON programming language.

5.2 RQ 1-(2): What DLCMT Methods Can Be Used in
Design Creation of Conceptual Design?

5.2.1 Text-to-3D Shape Generation. The task of text-to-3D
shape generation is illustrated in Fig. 6(b). To accomplish this
task, Jahan et al. [93] proposed a semantic label-guided shape gen-
eration approach, which can take one-hot semantic keywords as
input and generate 3D voxel shapes without color and texture.
The proposed method was trained using chairs, tables, and lamps
obtained from the co-segmentation (COSEG) dataset [94] and
ModelNet [95]. Based on their work on text-to-3D shape retrieval
task using a joint embedding of text and 3D shape, Chen et al.
[17] further combined the joint embedding model with a conditional
Wasserstein GAN (WGAN) framework [96], which enables the
generation of colored voxel shapes in low resolution. To improve
the surface quality of the generated 3D shapes, several studies
have been conducted using the proposed 3D-text cross-modal
dataset by Chen et al. [17]. Li et al. [97] proposed to use class
labels to guide the generation of 3D voxel shapes with the assump-
tion that shapes with different labels (e.g., chairs and tables) have
different characteristics. They added an independent classifier to
the WGAN framework [96] to guide the training process. The clas-
sifier could be trained together with the generator to enable more
distinctive class features in the generated 3D shapes. To further
improve the quality of 3D shapes generated with color and shape,
Liu et al. [50] leveraged implicit occupancy [98] as the 3D represen-
tation and proposed a word-level spatial transformer [99] to corre-
late shape features with semantic features of text by decoupling
shape and color predictions for learning features in both texts and
shapes.
The methods introduced above only support the generation of 3D

shapes in individual categories (e.g., the chair category or the table
category). The generalizability (the ability to generalization) of
these methods remains challenging due to the unavailability and
limited size of the paired data of 3D shapes and text descriptions.
To improve generalizability, some researchers have tried to utilize
some pre-trained models (e.g., CLIP [52]) and zero-shot learning
techniques [100]. Sanghi et al. [43] proposed a method called CLIP-
forge, which could generate 3D voxel shapes from text descriptions
for ShapeNet [49] objects. It required training data (i.e., rendered
images, voxel shapes, query points, and occupancy) obtained
from 3D shapes without text labels. They first learned an encoding
vector of a 3D geometry and then a normalizing flowmodel [101] of

that encoding vector conditioned on a CLIP [52] feature
embedding.
CLIP-forge has good generalizability to ShapeNet [49] catego-

ries. To further improve the generalizability to classes outside
common 3D shape datasets (e.g., ShapeNet [49] and ModelNet
[95]), Jain et al. [102] combined neural radiance field (NeRF)
[103] with an image-text loss from CLIP [52] to form dream
fields. A dream field is a neural 3D representation that can return
a rendered 2D image given the desired viewpoint. After training,
the method could generate colored 3D neural geometry from text
prompts without using 3D shape data, resulting in better
generalizability.

5.2.2 Text-to-Sketch Generation. Sketches can inspire design
ideas [12–14], and text-to-sketch tools could help designers effi-
ciently capture fleeting design inspirations. The generation of
images from text descriptions (i.e., text-to-image synthesis/genera-
tion) has seen great progress recently [104]. Unlike text-to-image
generation, text-to-sketch synthesis is more challenging and can
only rely on rigid edge/stroke information without color features
(i.e., pixel values) in an image [63].
Text2Sketch [105] applied a Stagewise-GAN (i.e., generative

adversarial network) to encode human face attributes identified
from text descriptions and transforms those attributes into sketches,
which were trained on a manually annotated dataset of text-face
sketches. Although the method was applied in face recognition
instead of product design, it is worth being introduced here
because the method is inspiring and could be applied to the
design domain if a different dataset is used. Yuan et al. [63] con-
structed a bird sketch dataset by modifying the Caltech-University
of California San Diego (UCSD) Birds (CUB) dataset [106], based
on which they trained a novel GAN-based model, called T2SGAN.
The model featured a conditional layer-instance normalization
module that could fuse the image features and sentence vectors,
thus efficiently guiding the generation of sketches.
The methods mentioned above were developed for single-object

sketch synthesis, and there are also methods for multi-object gener-
ation, which could be useful for generating designs part by part. An
example of such methods is shown in Fig. 8. Huang and Canny [53]
developed Sketchforme by adopting a two-step neural network: (1)

Fig. 6 Demonstration of (a) text-to-3D shape retrieval: retrieving
3D shapes that best match the NLDs from a given dataset or
repository and (b) text-to-3D shape generation: automatically
generating a 3D shape that matches the NLD. The examples of
NLD and images are obtained from ShapeNet [49].

Fig. 7 Sketch-to-3D shape retrieval method by Wang et al. [48].
For each row, the 2D drawing is the query sketch and the 3D
models are the retrieved 3D shapes from an existing dataset,
PSB [67]. The figure is used with permission.

Fig. 8 Demonstration of text-to-sketch generation, which can
generate sketches that correspond to users’ NLDs
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a transformer-based mixture density network for the scene com-
poser to generate high-level layouts of sketches and (2) a
sketch-RNN [16] based object sketcher to generate individual
object sketches. The scene composer and the object sketcher were
trained using the visual genome dataset [107] and the “Quick,
Draw!” dataset [108], respectively. Since different datasets of text
and sketches can be used, this method helped avoid the requirement
for paired data of text description and sketches of an object. Based
on Ref. [53], Huang et al. [54] took a further step and proposed an
interactive sketch generation system called scones. It used a compo-
sition proposer to propose a scene-level composition layout of
objects and an object generator to generate individual object
sketches.

5.2.3 Sketch-to-3D Shape Generation. There are mainly two
paradigms for 3D shape reconstruction from 2D sketches: the
geometric-based method and the learning-based method. Sketch-
based interfaces for modeling are a major branch of geometric-
based methods [109] and we do not review this line of work in
light of the scope of review. We also excluded some methods that
apply deep learning techniques, but require predefined geometric
models to guide 3D reconstruction, such as the methods presented
in Refs. [58,110]. We focus on reviewing deep learning-based
methods without using predefined geometric models that require
the design of rules.
Deep learning-based sketch-to-3D shape generation without any

predefined geometric models was initialized by Lun et al. [35]. They
proposed an encoder-multiview-decoder architecture that can
extract multiview depth and normal maps from a single sketch or
multiple sketches and output a 3D shape in point clouds. The result-
ing 3D point cloud shape can be converted to a 3D mesh shape for
better visualization. 2.5D visual surface geometry (e.g., depth and
normal maps) is a representation that can make a 2D image
appear to have 3D qualities [111,112]. Similarly to Ref. [35],
many works use the strategy of predicting 2.5D information first
to guide the generation of 3D shapes. Nozawa et al. [19] extracted
depth and mask information from a single input sketch by an
encoder–decoder network. Then, a lazy learning [113] method
was performed to find similar samples in the dataset to synthesize
a 3D shape represented by point clouds. Later, Nozawa et al. [20]
extended Ref. [19] by changing the architecture with a combination
of GAN and lazy learning.
To improve the surface quality of the shapes resulting from their

previous work [57], Delanoy et al. [114] proposed to first predict
one normal map per input 3D sketch (type I). Then they fused all
normal maps predicted from multiview sketches to the predicted
3D voxel shape to optimize the resulting surface mesh. Li et al.
[56] introduced an intermediate CNN layer to model the direction
of dense curvature and used an additional output confidence map
along with the depth and normal maps extracted using CNNs to
generate high-quality 3D mesh shapes. They also provided a user-
interaction system for 3D shape design. Similar to the idea of
obtaining an intermediate 2.5D representation, Yang et al. [115]
proposed a skeleton-aware modeling network to generate 3D
human body models using skeletons as the intermediate representa-
tion. The network can first interpret sparse joints from input
sketches and then predict the skinned multi-person linear model
[116] parameters based on joint-wise features. Although this work
focuses on the generation of human bodies, the proposed network
can inspire design researchers to consider predicting important
feature points to guide the generation of 3D shapes. Li et al. [33]
proposed a predictive and generative target-embedding variational
autoencoder and demonstrated its effectiveness by solving a
sketch-to-3D shape generation problem. The authors used a 3D
extrusion shape obtained by extruding a 2D silhouette sketch as
an intermediate representation, which transferred the problem to a
3D–3D prediction problem. The approach can predict a high-quality
3D mesh shape from a silhouette sketch without inner contour lines,
as shown in Fig. 9. In addition to the prediction function, the

proposed approach can also generate numerous novel 3D mesh
shapes using its generative function.
The efforts of providing an easy-to-use sketching system can be

beneficial to novice users for customized design. Delanoy et al. [57]
proposed an interactive sketch-to-3D generations system. They
used a CNN to transform 3D sketches (type I) to 3D voxel
shapes, and another CNN as an updater to update the predicted
3D shape while users are providing more sketches. The voxel
shapes can then be transferred to 3D mesh shapes. However, the
output 3D shapes are low quality due to the high memory consump-
tion of the voxel representation. To improve the surface quality of
the resulting 3D shapes, mesh and implicit field have been
applied by some interaction systems. For example, Han et al. [58]
proposed a novel sketching system to generate 3D mesh human
faces and caricatures using a CNN-based deep regression
network. The method was trained on a newly proposed dataset
extended from FaceWare-house [117]. Du et al. [59] designed a
novel sketching system composed of a part generator and an auto-
matic assembler to generate part-aware man-made objects with
complex structures. They used implicit occupancy [98] as the 3D
representation which can be transferred to a 3D mesh shape with
detailed geometry. Similarly, Wang et al. [118] introduced a
novel sketch-to-3D shape method that can segment a given sketch
and build a transformation template that is then used to generate
multifarious sketches. These sketches are then taken as input to
an encoder-multiview-decoder network similar to Ref. [35] to gen-
erate a 3D point cloud shape. Luo et al. [60] proposed a
coarse-to-fine-grained 3D mesh modeling system using 3D sketches
as input for animalmorphic head design. A coarse mesh can be first
generated by the input 3D sketch. Then, a novel pixel-aligned
implicit learning approach is used to guide the deformation of the
coarse mesh to produce a more detailed mesh. Guillard et al. [6]
introduced an interactive system to reconstruct and edit 3D
shapes using implicit field representation, DeepSDF [119] format,
from 2D sketches using an encoder–decoder architecture, which
can output mesh shapes.
The aforementioned methods are usually trained using one indi-

vidual category of objects and can only deal with 3D shape gener-
ation from sketches within that specific category. To improve the
generalizability of the method, Jin et al. [51] proposed a novel
network consisting of a VAE (i.e., variational autoencoder) and a
volumetric autoencoder to learn the joint embedding of sketches
and 3D shapes using various classes of objects. The trained
network has good generalizability and can be used to predict 3D
voxel shapes based on 2D occluding contours. Zhang et al. [120]
are the first to generate a 3D mesh shape from a single free-hand
sketch. They proposed a view-aware network based on GAN to
explicitly condition the process of generating 3D mesh shapes on
viewpoints. The method can improve generation quality and bring
controllability to output shapes by explicitly adjusting viewpoints,
which can be well generalized to out-of-distribution data.
The methods introduced above have to be trained using super-

vised learning, which means that the training data must be pairs
of sketches and 3D shapes (i.e., labeled data). Wang et al. [121] pro-
posed an unsupervised learning method for sketch-to-3D shape
reconstruction. They embedded unpaired sketches and rendered
images from 3D shapes to a common latent space by training an
adaption network via autoencoder with adversarial loss. During
the inference of 3D shapes from sketches, they retrieved several

Fig. 9 Sketch-to-3D shape generation method by Li et al. [33].
The first row shows the input 2D silhouette sketches, and the
corresponding predicted 3D mesh shapes are shown in the
second row.
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nearest-neighboring 3D shapes from the training dataset as prior
knowledge for a 3D GAN to generate new 3D shapes that best
match the input sketch. This method can only output very coarse
3D voxel shapes but provides an interesting idea based on unsuper-
vised learning for sketch-to-3D shape generation.
In addition to the usage of popular 3D shape representations (e.g.,

point clouds, voxels, meshes, and implicit representation) in
sketch-to-3D shape generation, new 3D representations are
gaining more and more attention in this field. For example,
Smirnov et al. [5,122] proposed a novel deformable parametric tem-
plate composed of Coon patches that can naturally fit into a conven-
tional CAD modeling pipeline. The resulting 3D shapes can be
easily converted to non-uniform rational basis spline (NURBS) rep-
resentation, allowing edits in CAD software.

5.3 RQ 1-(3): What DLCMT Methods Can Be Used in
Design Integration of Conceptual Design?. In this section, we
introduce some works relevant to text-to-3D shape and
sketch-to-3D shape integration methods. These methods allow
designers to further edit and manipulate 3D designs by changing
text prompts or sketches.
The sketch-to-3D shape generationmethod introduced by Jin et al.

[51] could be further used to manipulate a given 3D voxel shape to
target input sketches with the learned joint embedding space.
However, it focuses on manipulating the outline of a given 3D
shape. To enable manipulation of color and shape, CLIP-NeRF
[61] was proposed based on CLIP [52], which has a disentangled
conditional NeRF [103] architecture by introducing a shape code
to deform the 3D volumetric field and an appearance code to
control the colors. The method can edit a given colored 3D voxel
shape to meet the target semantic description of color and shape.
The text-to-3D generation method [50] can also allow intuitive
manipulation of the color and shape of a generated 3D mesh shape
simply by changing the input semantic keywords of color or shape.
To enable detailed edits or manipulation of geometries, in some

works a differentiable renderer has been applied. Sketch2Mesh [6]
introduced in Sec. 5.2.3 can also perform shape editing due to the
integrated differentiable renderer. Using the representation power
of CLIP [52], Michel et al. [36] proposed Text2Mesh (see
Fig. 10) to manipulate a given 3D mesh shape by predicting color
and local geometric details that conform to the description of the
target text.
There have been a series of DLCMT methods that can be applied

to product shape design in different design steps of conceptual
design. As a summary of the review, DLCMT methods indeed
provide opportunities to address the two major challenges as dis-
cussed in Sec. 2 because they can (1) take various design modalities
as input and provide methods catering to design search, design

creation, and design integration, and (2) improve design creativity
by actively involving human input [53,54,59,60]. Taking advantage
of these opportunities and implementing the appropriate DLCMT
methods in conceptual design can therefore accelerate the search
and iteration of design concepts (e.g., Refs. [17,44,48]) and the
modification of designs (e.g., Refs. [36,43,51,58]). We also
observe that DLCMT methods could be particularly useful in
design applications, such as design democratization, design educa-
tion, and immersive design (e.g., Refs. [17,44,48,62,89]).

5.4 RQ 2:What Are the Challenges in Applying DLCMT to
Conceptual Design and How Can They Be Addressed?. Exam-
ination of the literature has helped us identify several challenges in
applying DLCMT methods to conceptual design. DLCMT has been
focusing on shape synthesis, which can be applied in product shape
design, as discussed above. However, Regenwetter et al. [3] state
that 3D synthesis work is only tangential to engineering design
because they focus more on visual appearance, rather than func-
tional performance or manufacturability. Although we partially
agree with Ref. [3] that the overlap between shape synthesis and
engineering design is insignificant in light of the importance of
shape design, we must admit that product shape is not the only
focus in conceptual design. Other factors, such as engineering per-
formance, system design features, and manufacturability, should
also be considered and can be incorporated into the data-driven
design cycle even in the early stages of the design.
In this section, we discuss in detail the challenges of applying

DLCMT methods to engineering design from four aspects, includ-
ing the lack of cross-modal datasets that incorporate engineering
performance and manufacturability, complex systems design
using DLCMT, 3D representations in DLCMT, and the generaliz-
ability of DLCMT methods.

5.4.1 The Lack of Cross-Modal Datasets That Incorporate
Engineering Performance and Manufacturability. Data are the
fuel for deep learning-based design methods. Data sparsity is a chal-
lenging issue for data-driven design methods, and there is generally
a deficiency of big practical data [3], regardless of the data modality,
to train useful and meaningful models for engineered products.
Unlike the computer science community, numerous open source
unimodal or cross-modal datasets, such as Refs. [17,49,82,95],
are available to researchers to compare their methods with state-
of-the-art methods. For example, 16 articles (e.g., Refs.
[6,17,34,85,120]) use ShapeNet [49] as the training data of their
methods. There is a lack of similar benchmark datasets in the engi-
neering design field. Even if those datasets from computer science
can also be beneficial to the engineering design community, they
mainly focus on the shape of objects and have little emphasis on
downstream engineering-related information. Using text-to-3D
shape methods as an example, a user could say “I want an SUV
with low fuel consumption.”An SUV car shape could be easily gen-
erated, but we would not know whether the drag coefficients of the
generated designs meet the requirement or not. We might ask the
following question: How could a computer understand that NL
description and translate it into a primitive SUV car shape taking
into account the drag performance? Therefore, finding answers to
this question could be an interesting research direction.
Similarly, it is also worth exploring how other downstream engi-

neering requirements and constraints (e.g., manufacturability) can
be counted when applying DLCMT to engineering design. We
have not found any DLCMT methods that take into account engi-
neering performance and manufacturability. One challenge here is
the lack of such datasets. The difficulties primarily rest in the cost
(either monetary or time) of running high-fidelity computational
or physical experiments. Moreover, certain experimental data
could be confidential for commercial or military purposes. The
availability of large cross-modal datasets with engineering perfor-
mance and manufacturability information could greatly ease the
verification and validation of existing methods for DLCMT and

Fig. 10 Text-to-3D shape manipulation method, Text2Mesh by
Michel et al. [36]. The method can manipulate an existing mesh
shape by adding color, texture, and geometric details driven by
a target natural language description. The figure is used with
permission.
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promote the development of new DLCMT methods for the design
of engineered products.

5.4.2 Complex Systems Design Using DLCMT. A few
DLCMT studies [53,54,59] aim to generate designs part by part
considering the structural relationship among components, which
can be potentially applied to the design of systems. But this
leaves a large space for engineering design researchers to investi-
gate in the future. The challenges of addressing systems design
using DLCMT mainly stem from the structural complexity of an
engineered product, such as dependencies, constraints, and the rela-
tionship between components.
An engineered product is usually a system consisting of intercon-

nected parts with complex dependencies. To take into account parts’
dependency information, there are generally two ways to support
the conceptual design of a product at the system level when apply-
ing DLCMT methods. In the first method, each component of the
product is generated separately using DLCMT, and then the compo-
nents are assembled either automatically using rules-based com-
puter algorithms or manually [53,54]. The second method is often
referred to as part-aware generative design [30,123,124]. The objec-
tive of using DLCMT methods for part-aware design is to learn the
structural relationships and dependencies between parts directly
from the training data so that parts generation and assembly can
be automatically completed.
Compared to the first method, the second method can save time

and the cost of additional assembly steps. Those steps are often non-
trivial, especially when one wants to computerize the assembly
process in CAD software. In addition, part-aware generative design
methods better capture the geometric details of 3D shapes
[123,124]. For example, in the transition regions between two com-
ponents (e.g., the connection regions between the side rear mirrors
and the car body). These geometric details may significantly influ-
ence the engineering performance (for example, aerodynamic drag)
of a design.
As mentioned above, there are a few studies, i.e., text-to-sketch

generation [53,54] and sketch-to-3D [59] methods for DLCMT
attempting to integrate the concept of part-aware design, but most
methods treat the design object as a single monolithic part without
a systems design perspective. Considering engineering applications,
treating a design as awhole piece could limit the transition of the gen-
erated design shapes to later design stages, since components are
usually manufactured separately. Attention has been paid to by the
engineering design community [30,125] for part-aware design.
However, how to enable part-aware design in DLCMT remains
underexplored and is an important research direction.

5.4.3 3D Representations in DLCMT. Designs can be factored
using different representations for storage, computation, and pre-
sentation. For example, 3D representation matters both visual
quality and computational cost when implementing DLCMT, and
the choice between them is often a difficult decision. Furthermore,
in engineering design applications, the choice of 3D representation
also influences the compatibility with downstream engineering
analysis in CAD and CAE software. In what follows, we share our
insight into the challenges associated with 3D representation in
both aspects.
3D shapes with high visual quality and rich geometric details can

help designers better understand a design concept. Voxels, point
clouds, and meshes are the most commonly used representations
for 3D geometry. Similar to the pixels of images, voxel grids are
naturally adapted to the convolutional neural network (CNN)
model, which is the major reason for its prevalence in 3D geometry
learning research. The majority of the DLCMT methods (e.g.,
Refs. [17,43,57,66,96,97,121]) uses voxels for 3D shape represen-
tation. Voxel shapes are usually needed to be converted to mesh
shapes for better visualization. However, the transformed mesh
shapes will look coarse if the resolution of the voxel shapes is
low. This could negatively influence the subjective evaluation of
the shape of a design concept, and the design concept might be

overlooked by designers. An intuitive way to improve the resolution
of the resulting 3D voxel shapes is to use high-resolution training
data, but this may not be feasible due to the limited computing
resources for training the neural network. Fukamizu et al. [18] pro-
vided a two-stage strategy to synthesize high-resolution 3D voxel
shapes from natural language, which could be an inspiring
method for dealing with low-resolution issues. Point clouds
[19,20,35,126] are more efficient in representing 3D objects, but
do not cover geometric details. For example, it does not encode
the relationship between points and the resulting topology of an
object, leading to a challenging conversion to meshes. Using
meshes [56,58,120,127] for 3D representation could generally alle-
viate the low visual quality and data storage problems, but, in the
meantime, it is challenging to prepare meshes for deep learning
methods due to their discrete face structures and unordered ele-
ments. Furthermore, the topology of 3D shapes cannot be easily
handled using meshes. Implicit representation of 3D shapes
[6,59,60,119] represents the surface of a shape by a continuous vol-
umetric field that encodes the boundary of the shape as the set at the
zero level of the learned implicit 3D shape function. It can better
address different topologies of 3D shapes and requires less data
storage, which is a promising representation for high-resolution
3D shapes. See Table 2 for the pros and cons of applying those
four representations to deep learning methods.
In addition to the above four representations, there are a few new

3D representations that are promising for handling the trade-off
between the effectiveness of training neural networks and the
quality of the resulting 3D shapes. NeRF [61,102,103] is a method
for generating novel views of scenes or objects. It can take a set of
input images of an object and render the complete object by interpo-
lating between the images. NeRF [103] is also topology-free and can
be sampled at high spatial resolutions. However, 3D shapes repre-
sented by NeRF are “hidden in the black box” and we can only
observe them through images rendered from different viewpoints.
All the 3D representations mentioned above (i.e., voxels, point
clouds, meshes, NeRF, and implicit representation) are generally
not adapted to CAD software. This often brings about compatibility
issues that could impede downstream editing and engineering anal-
yses of the generated 3D shapes. To solve these problems, there
are typically two ways. One way is to convert them to CAD
models (e.g., converting stereolithography (STL)/object (OBJ)
meshes to B-Rep solids). Another way is to handle the CAD shape
data directly in deep learning models. Deep learning of unimodal
CAD data is still an underexplored field, although some methods
[128–132] and CAD datasets [133–136] have recently been intro-
duced. DLCMT directly using CAD data [5] can be even more chal-
lenging due to the domain gap between design modalities and turns
out to be a promising research direction.
Choosing the most appropriate 3D representation compatible

with the adopted deep learning technique remains a challenging
task. It involves considerations of data availability, data preprocess-
ing, computational cost, visual quality of the resulting 3D shapes,
data postprocessing, and the ability to adapt to later design stages.

5.4.4 Generalizability of DLCMT Methods. Finally, we
noticed that efforts have been made to make the DLCMT
methods more generalizable, independent of the variation
between design objects (e.g., Refs. [36,51]). There are advantages
and disadvantages to generalizing the methods. On the one hand,
the diversity in different methods helps address the unique nature
of different design problems, so a generalized approach may not
be optimal for solving a specific design problem. On the other
hand, generalizability allows a method to apply to a wider range
of design problems. We focus on discussing the advantages here
since we observe trending efforts (e.g., Refs. [43,102]) aiming to
improve the generalizability of DLCMT methods in the review. It
is challenging for deep learning methods to be generalized across
multiple design problems [3]. The generalizability of a deep learn-
ing method means its ability to generalize to classes of objects
beyond those used for training data. For engineering design
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applications, due to the sparsity of training data and the special
treatment designed in the neural network architecture for a specific
problem, a deep learning-based design method is difficult to gener-
alize even in the cases where one design modality (e.g., 2D sketches
or 3D shapes) is involved, let alone the generalization issues of
applying DLCMT methods that involve multiple different
modalities.
Some methods [43,102] utilize transfer learning techniques (e.g.,

zero-shot learning) and pre-trained models (e.g., CLIP [52]) or spe-
cially designed neural network architectures (e.g., unsupervised
learning methods [118]) to improve generalizability, which could
be good starting points for the engineering design community to
further explore other possibilities. The challenge of generalizing
the methods for DLCMT couples with other challenges and requires
a community-wide effort to share datasets, create data repositories,
define benchmark problems, and develop testing standards.
In summary, we have discussed the opportunities and challenges

associated with applying DLCMT methods to conceptual design
and proposed potential solutions to overcome the challenges with
the insight gained from this literature review effort. The insights
generated can potentially point to promising research directions
for future studies.

6 Research Questions for Future Design Research
We notice that the opportunities and challenges identified previ-

ously are highly related to several trending topics in the engineering
design community. In this section, we propose six RQs that relate
DLCMT to these trending topics: RQ (1) → design representations
[137]; RQ (2) → generalizability and transferability of deep
learning-based design methods [22]; RQ (3) → decision-making
in AI-enabled design process [138]; RQ (4) and (5) → human–AI
collaboration [23]; RQ (6) → design creativity in deep learning-
based design process [37]. These RQs also point to potential
research directions (see Sec. 7 for detail) where DLCMT can lead
to. We hope these RQs can arouse a wide range of discussion and
call for more efforts within the engineering design community to
develop and apply DLCMTmethods to address the challenges asso-
ciated with conceptual design and beyond.

(1) What are the guidelines for selecting the most appropriate
design representations in DLCMT?

(2) How much can the generalizability and transferability of the
latent representation of multimodal data learned from
DLCMT be extended across different product shape
categories?

(3) Since DLCMT methods can shorten the cycle of generating
designs and even connect to the downstream engineering
analyses and manufacturing requirements, how could the
information coming from the later design stages influence
the regeneration of design concepts, and thereby a designer’s
decisions?

(4) DLCMT methods have the potential to facilitate the data-
driven design process with humans in the loop, but how can
we balance the involvement of humans and computers, and
facilitate effective bidirectional human–AI communications
to better stimulate designers” creativity at the human–AI
interface?

(5) With the establishment of the human–AI interaction in the
conceptual design based on DLCMT, what could the
co-evolution between humans and AI look like?

(6) Although design creativity can be augmented by bringing
humans in the loop when using DLCMT methods for
product shapes generation, these methods could suffer from
the limitation of data interpolation inherently rooted in data-
driven design methods. Fundamental questions, such as what
new mechanisms and neural network architectures can be
built to enable the algorithm to extrapolate beyond the train-
ing data, thus more effectively augmenting designers’ crea-
tivity, shall be further explored in the future.

7 Closing Remarks
In this paper, we conducted a systematic review of the methods

for DLCMTs, including text-to-sketch, text-to-3D shape, and
sketch-to-3D shape retrieval and generation methods, for the con-
ceptual design of product shapes. Those methods could be
applied in the design search, design creation, and design integration
steps of conceptual design. Unlike other deep learning methods
applied in engineering design, DLCMT allows human input of
texts and sketches, which can explicitly reflect designers’ and/or
users’ preferences. As designers can be more actively involved in
such a design process, human–computer interaction and collabora-
tion are promoted, thereby it has a great potential to improve the
conceptual design of products using a data-driven design process
with humans in the loop compared to traditional design automation
methods and computer-aided design methods. DLCMT could also
facilitate the engineering design education and democratization of
product development by allowing intuitive inputs (e.g., text descrip-
tions and sketches), and an immersive design environment by inte-
grating VR, AR, and MR techniques.
With the attempt to apply new 3D data representations in

DLCMT and the availability of more public datasets, opportunities
open up for the development of new methods for DLCMT.
However, the deficiency of training datasets, trade-off in the
choice of representations of 3D shapes, lack of consideration of
engineering performance, manufacturability, and part-aware
design, and the ability of generalization still challenge the engineer-
ing design community to apply DLCMT to engineered product
design. We would like to encourage attention and efforts from the
engineering design community.
There are a few limitations in the current literature review that the

authors would like to acknowledge and share. First, the set of key-
words used to search the literature has covered all topics in our
scope of the review. However, other topics, such as shape-to-text
generation (namely, shape captioning in the literature), could also
be of interest to the engineering design community. Second, for
the topics of sketch-to-3D shape retrieval and generation, we did
not include all relevant articles, although we have covered the
most influential and the most recent publications.
In the future, we will continue the review and conduct a more

comprehensive analysis of the relevant works on DLCMT.
Besides the review effort, we see the merit of conducting a compar-
ative study to further understand the effects of DLCMT on the con-
ceptual design by enabling and disabling the DLCMT-based
assistance in the design process. We believe that the methods
reviewed, the discussion of opportunities, challenges, potential
solutions, and future research directions of applying DLCMT to
conceptual product shape design can benefit the data-driven
design research in the engineering design community. We hope
this review effort can also facilitate the discussion and attract
more attention from the engineering design community and indus-
try stakeholders when applying DLCMT to improve the conceptual
design of product shapes and beyond.
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Appendix A: Details of Literature Search

As introduced in Sec. 3.2, Table 3 shows the number of articles
found in major literature databases. In addition, we used the time
range of Jan. 2021 to Jun. 2022 to search for the most recent
studies for sketch-to-3D shape retrieval and generation, the
number of which is indicated in parentheses (e.g., (35) for
ShRecSk).
Figure 11 shows the articles that are most relevant to the two key

articles [35,48] using Connected Papers (accessed in Jun. 2022).
Studies that meet the scope of our review are indicated using a
quadrilateral in each sub-figure.

Appendix B: Paper Summary
We summarize and tabulate all 50 articles reviewed in Table 3.

There are 11 source journals and 20 conference proceedings, and
their acronyms are shown below.
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