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Abstract: As material scarcity and environmental concerns grow, material reuse and waste
reduction are gaining attention based on their potential to reduce carbon emissions and
promote net-zero buildings. This study develops an innovative approach that combines
multi-modal sensing technologies with machine learning to enable contactless assessment
of in situ building materials for reuse potential. By integrating thermal imaging, red, green,
and blue (RGB) cameras, as well as depth sensors, the system analyzes material conditions
and reveals hidden geometries within existing buildings. This approach enhances material
understanding by analyzing existing materials, including their compositions, histories, and
assemblies. A case study on drywall deconstruction demonstrates that these technologies
can effectively guide the deconstruction process, potentially reducing material costs and
carbon emissions significantly. The findings highlight feasible scenarios for drywall reuse
and offer insights into improving existing deconstruction techniques through automated
feedback and visualization of cut lines and fastener positions. This research indicates
that contactless assessment and automated deconstruction methods are technically viable,
economically advantageous, and environmentally beneficial. Serving as an initial step
toward novel methods to view and classify existing building materials, this study lays a
foundation for future research, promoting sustainable construction practices that optimize
material reuse and reduce negative environmental impact.

Keywords: deconstruction; material reuse; multi-modal sensing; artificial intelligence;
machine learning; drywall; circular economy; sustainable construction; automated
assessment; building materials

1. Introduction
The construction industry, a significant consumer of natural resources, is urgently

in need of sustainable solutions. It accounts for approximately 40% of global energy
use [1], contributing to 35% of worldwide CO2 emissions and generating between 45%
and 65% of the waste accumulated in landfills [2]. This massive environmental footprint
necessitates the adoption of circular economic principles, which prioritize material reuse
and resource efficiency over traditional linear approaches to extraction. Unlike conventional
methods where construction and demolition (C&D) waste is discarded, circularity seeks to
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minimize waste and maximize resource efficiency, thereby reducing overall environmental
impacts [3].

Despite the growing emphasis on circular economic principles, significant challenges
remain in their practical implementation. This research addresses three critical challenges
in construction sustainability: (1) the lack of efficient methods for assessing material
reuse potential in existing buildings; (2) the absence of standardized approaches for non-
destructive material recovery; and (3) the need for data-driven decision support tools in
deconstruction planning.

To illustrate the application of circular economic principles, this study focuses on
gypsum wallboard (drywall), representing a significant opportunity for waste reduction in
the construction industry. In traditional linear construction practices, drywall assemblies
are often modified or demolished in ways that damage the drywall, making it unsuitable
for reuse [4]. Each year, the United States generates 13 million tons of gypsum wallboard
debris, with 85% ending up in landfills [5]. This presents a significant environmental
challenge, as gypsum can produce hazardous gases such as hydrogen sulfide when it
decomposes near biodegradable materials [6].

Addressing these challenges requires innovative assessment methods for material
recovery. Advanced sensing technologies have been successfully used in other material
reuse studies to assess the condition of wood and metal, providing valuable data to
guide reuse decisions [7–10]. However, their application to drywall assessment remains
underexplored. In the context of drywall, these technologies are beneficial for identifying
undamaged sections suitable for reuse, even when hidden behind surface finishes or
affected by age-related deterioration.

This research investigates the reuse potential of gypsum wallboards in renovation
projects. The key research question guiding this study is: “How can drywall be decon-
structed and reused to minimize environmental impact while maintaining material integrity
for future use”?

To address this question, this investigation was structured around the following
research objectives:

1. Develop and validate a contactless assessment methodology for evaluating material
reuse potential.

2. Create an integrated framework combining multi-modal sensing technologies with
machine learning for material analysis.

3. Demonstrate the practical application and benefits of the proposed approach through
a drywall deconstruction case study.

4. Provide recommendations for industrial implementation of the contactless material
assessment method.

Machine-learning algorithms are integrated into this process to analyze the data
collected from the sensors and predict the suitability of materials for reuse. By compar-
ing historical data on material properties with real-time sensor inputs, machine learning
enhances the precision and efficiency of the assessment process. This combination of sens-
ing and machine learning represents a novel contribution to the study of drywall reuse in
construction, offering a more data-driven, scalable approach to material recovery and reuse.

In summary, this study addresses the technical, environmental, and economic chal-
lenges of drywall reuse by developing a guided, contactless deconstruction process. By
applying advanced sensing techniques, machine learning, and circular economy principles,
the research aims to provide a framework for more sustainable drywall deconstruction
practices, potentially informing future construction policies and standards. The findings
contribute to the theoretical understanding and practical implementation of circular eco-
nomic principles in construction, particularly in material assessment and recovery.
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2. Advanced Technologies and Methods for Material Assessment
in Construction

This section examines specific technological developments in automated material assess-
ment, focusing on sensing technologies, detection algorithms, and implementation frameworks
that inform the proposed methodology. The analysis specifically addresses the technical capabil-
ities and limitations of current approaches to guide subsequent system development.

2.1. Advanced Sensing Technologies in Building Assessment

In recent years, significant advancements in construction monitoring have been wit-
nessed through multi-modal sensing systems. These systems integrate Light Detection
and Ranging (LiDAR), Internet of Things (IoT) devices, thermal imaging, hyperspectral
imaging, advanced RGB cameras, and Radio-Frequency Identification (RFID) to enhance as-
sessment capabilities and reduce costs [11,12]. Implementing artificial intelligence, coupled
with machine-learning approaches, enables continuous structural integrity, environmental
conditions, and material properties [13].

The fusion of multiple sensing modalities addresses the limitations of single-modal
approaches. For example, combining RGB and thermal imaging through early, interme-
diate, and late fusion techniques has improved defect detection accuracy in exterior wall
inspections [14]. This multi-modal approach expands sensing capabilities across different
dimensions—thermal and multispectral cameras in the spectral dimension and LiDAR
and depth cameras in the spatial dimension [15]. Recent applications demonstrate success
in thermal behavior simulation using passive airborne multi-modal sensor data [16] and
on-site construction safety management through Building Information Modeling (BIM)
integration [17].

Notably, façade deterioration detection achieved 86.5% mean average precision
through the fusion of infrared and visible imagery [18]. The integration of RGB, depth, and
thermal imaging has proven effective for precise indoor sensing applications [19]. While
these technologies demonstrate significant potential for building assessment, their applica-
tion specifically to material reuse evaluation creates new opportunities for innovation. The
challenge lies in adapting these technologies to assess current conditions and potential for
future material recovery and reuse.

2.2. Machine Learning Applications in Material Assessment

Machine-learning algorithms have significantly enhanced the capability to process
and analyze multi-modal sensor data in construction applications. Recent implementations
demonstrate success in automated defect detection, material classification, and condition
assessment, with deep-learning models trained on thermal-visible image pairs achieving
detection rates that significantly outperform manual inspection methods for common
structural defects [20,21]. The combination of thermal and visible imaging modalities has
proven particularly powerful, as multi-view thermal-visible datasets have achieved high ac-
curacy in cross-spectral matching across building infrastructure [22]. Neural networks have
proven especially effective in correlating surface measurements with material conditions,
attaining coefficient of determination values higher than 0.96 [23].

Applying machine learning to sensor fusion has enabled more sophisticated analysis
capabilities, where advanced algorithms can analyze multiple data streams simultaneously
to create comprehensive material assessments [24]. Such systems integrate thermal signa-
tures, visual features, and depth information to identify suitable deconstruction methods,
optimize disassembly sequences, and estimate material recovery rates [20,21]. Incorporat-
ing machine-learning-driven sensor fusion into construction operations enhances accuracy
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and reliability, improving decision-making processes and resource utilization, as shown in
recent efforts to optimize material recovery by fusing diverse sensing modalities [25].

Real-time processing capabilities have advanced through the implementation of
edge computing and optimized neural network architectures, allowing for rapid anal-
ysis of sensor data streams and immediate feedback for deconstruction operations [22,25].
Machine-learning models—including neural networks, random forests, and support vector
machines—have effectively matched thermal-visible image pairs and predicted hazardous
material presence with accuracy rates exceeding 74% [25]. Moreover, these technologies
can forecast material deterioration patterns, enabling proactive maintenance and recovery
planning [23].

2.3. Automated Assessment and Recovery Systems

Building on the advancements in assessment technologies, computational optimization
has led to systematic approaches to deconstruction planning. Genetic algorithms have
demonstrated success in sequencing deconstruction activities while maintaining structural
stability [20]. These algorithms account for structural interdependencies, safety constraints,
and material recovery objectives, generating optimized deconstruction sequences that
maximize material salvage potential.

Multi-objective optimization models balance competing factors such as cost, time,
and environmental impact [26]. These models incorporate various constraints, including
structural stability, workspace accessibility, and material handling requirements. Advanced
planning systems utilize real-time sensor feedback to adjust deconstruction sequences
based on actual site conditions.

BIM integration enhances planning precision by providing detailed spatial and ma-
terial information [27–29]. It enables virtual planning and simulation of deconstruction
sequences, allowing for optimization before physical work begins. Recent developments in
4D BIM incorporate temporal aspects of deconstruction planning, enabling better coordina-
tion of recovery activities.

Automated recovery systems have evolved to include robotic implementations with
sophisticated control systems [20]. These systems combine sensor feedback with precise
mechanical control to execute complex deconstruction tasks. Advanced robotic assembly
systems can use Computer-Aided Design (CAD)-informed path planning to optimize part
manipulation and insertion trajectories [30]. This can be adapted to minimize damage
during material recovery and deconstruction.

2.4. Current Technical Limitations

Several technical challenges affect automated material assessment systems, requiring
careful consideration in system design and implementation. The limited detection capabili-
ties for subsurface conditions without invasive methods [31] present a significant challenge,
particularly in structures with multiple material layers or complex assemblies. Traditional
building assessment methods rely on invasive inspections that are time-consuming and
disruptive, leading to an incomplete understanding of available materials and hindering
effective planning [32].

Environmental factors significantly impact sensing system performance. Temperature
variations, humidity levels, and ambient lighting conditions can affect sensor accuracy and
reliability. While thermal imaging systems are generally effective for detecting subsurface
features, their performance diminishes when temperature differentials are minimal, as
subtle thermal variations and low-contrast anomalies tend to be lost amidst the background
noise of the thermal image [33]. RGB-based systems face challenges with varying lighting
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conditions and surface reflectivity, while depth sensors must account for occlusions and
complex geometries [34].

Integration difficulties between sensing systems and automated recovery equipment
pose additional challenges [13]. Real-time processing of multi-modal sensor data requires
significant computational resources [13], and synchronization between different sensor
types remains complex [35]. Current systems often struggle with latency issues when
processing multiple data streams simultaneously, potentially affecting the precision of
automated recovery operations [36].

The economics of automated assessment and deconstruction present another technical
barrier. Compared to standard demolition, automated deconstruction requires more sophis-
ticated equipment, specialized sensors, and advanced processing capabilities [37]. Building
assembly complexity and uncertainty around material recovery rates further contribute
to these technical challenges [38]. Market uncertainties also impede adoption, as variable
quality standards and unstable demand create risks for implementing advanced technical
solutions [39,40].

2.5. Drywall Assessment and Recovery Challenges

The composition and widespread use of gypsum wallboard present significant op-
portunities for material recovery in construction. Traditional gypsum boards, comprising
approximately 90% calcium sulfate dihydrate and 10% paper by weight [41], maintain
consistent material properties that could enable reuse applications. However, current
assessment methods face several technical limitations that complicate recovery efforts.
Traditional finishing methods eliminate the modular nature of panels through taping, joint
compound, and paint, making it difficult to remove intact panels later [5].

Current on-site assessment relies primarily on visual inspection, which fails to de-
tect internal deterioration or hidden moisture damage that could compromise reuse po-
tential [42]. While drywall samples can be thoroughly evaluated through laboratory
testing [43,44], this process typically requires several days and destructive sampling meth-
ods. This time-consuming and destructive nature of comprehensive material assessment
presents a significant barrier to efficient and widespread reuse implementation.

The technical challenges extend to the identification of hazardous materials. Although
drywall is technically recyclable, the presence of contaminants such as asbestos, lead, and
joint compounds often renders drywall waste from demolition and renovation activities
unsuitable for recycling [45]. Standard practices treat drywall as waste material, defaulting
to recycling or disposal [4], mainly due to technical difficulties in assessing and maintaining
material integrity during removal.

Recent research presents contrasting views on drywall reuse potential. While damage
from removal is repairable using existing methods, the labor-intensive nature of careful
deconstruction presents technical challenges under current practices [46]. Two potential
technical approaches have emerged: carefully removing individual panels for reuse or
preserving entire prefabricated wall sections with panels still attached to frames. While
successful reuse has been demonstrated through systematic deconstruction approaches [46],
current industry practices lack standardized methods for evaluating material conditions
without compromising panel integrity.

Environmental monitoring during storage and transportation poses additional techni-
cal challenges. Limited storage facilities and transportation logistics affect material quality
maintenance between deconstruction and reuse [47,48]. Temperature and humidity control
during storage, protection from physical damage during transport, and maintenance of
material traceability all require technical solutions for successful implementation.
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These technical limitations and assessment challenges inform the development of new
material evaluation and recovery methodologies, highlighting the need for innovative solu-
tions that simultaneously address multiple aspects of the assessment and recovery process.

2.6. Research Gaps and Proposed Approach

While existing research has highlighted the potential of contactless building assess-
ment technologies and automated deconstruction planning, gaps remain in developing
comprehensive, integrated systems for material assessment and recovery. Current ap-
proaches often address individual aspects of the deconstruction process rather than provid-
ing holistic solutions that bridge material evaluation, analysis, and recovery optimization.

The literature review has identified several critical gaps:

1. Limited integration of sensing technologies: While individual sensing technologies
have proven effective for building assessment, their integration, specifically for ma-
terial reuse evaluation, remains underexplored. Current methods typically rely on
single-modal approaches, limiting the comprehensiveness of material assessment.

2. Lack of nondestructive evaluation methods: Traditional material assessment often
requires destructive testing or visual inspection, which can damage the material
or lead to incomplete evaluation. Nondestructive methods for predicting material
reusability are largely underdeveloped.

3. Absence of standardized protocols: Current practices lack standardized approaches
for assessing material recovery potential, resulting in inconsistent evaluation methods
and variable recovery outcomes.

4. Limited automation in decision support: Existing deconstruction planning relies
heavily on manual assessment and experience-based decisions and lacks data-driven
support systems for material recovery optimization.

This research addresses these gaps through several innovative approaches:

1. Multi-modal sensing integration: The proposed methodology combines thermal imag-
ing, RGB, and depth data in a novel way to create comprehensive material profiles.
This integration enables the detection of hidden geometries, material conditions, and
potential defects without physical intervention.

2. Automated material analysis: This research advances beyond simple condition as-
sessment to predict material reusability and optimal recovery methods by developing
machine-learning algorithms specifically for material reuse classification.

3. Systematic assessment framework: The research establishes a standardized approach
to material evaluation through contactless methods, providing a repeatable and
reliable assessment protocol for industry adoption.

4. Data-driven decision support: The integration of sensor data with automated analysis
provides evidence-based recommendations for deconstruction planning, optimizing
both the recovery process and material reuse potential.

The drywall case study validates these approaches, demonstrating practical implemen-
tation while addressing industry-specific challenges in material recovery. This research thus
bridges the gap between theoretical possibilities and practical implementation, advancing
the field toward more sustainable construction practices.

3. Materials and Methods
This investigation employed advanced non-contact sensing technologies, primarily fo-

cusing on thermal infrared imaging as a foundational platform for exploring multi-modal
material assessment systems. The primary objective was to develop a robust methodology for
the non-destructive identification of structural elements within drywall assemblies, explicitly
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focusing on stud detection and positioning. This approach presented significant advantages over
conventional handheld detection methods, offering enhanced spatial coverage and temporal
efficiency through automated scanning protocols. Furthermore, this methodology established
a framework for the future integration of complementary sensing modalities, including near-
infrared (NIR) spectroscopy and hyperspectral imaging, to enhance detection capabilities across
diverse material compositions and environmental parameters.

3.1. Core Methodology Objectives

The thermal imaging investigation focused on several key objectives:

1. Validation of the reliability of thermal imaging for stud detection using quantita-
tive methods.

2. Optimization of environmental parameters and methodological protocols for maxi-
mum detection accuracy.

3. Development of robust algorithmic frameworks for interpreting thermal data and
localizing structural elements.

4. Cross-validation of system performance across various wall assembly configurations
and environmental conditions.

In parallel, the research explored the integration of advanced computer vision technolo-
gies and machine-learning-based object detection algorithms. This multi-modal approach
enabled simultaneous evaluation of subsurface structural elements and surface conditions,
significantly enhancing the efficiency of material salvage assessment. Specific computer
vision objectives included:

1. Implementation of automated rapid assessment protocols for material condition
evaluation.

2. Development of machine-learning-based damage detection and classification systems.
3. Establishment of standardized quantitative metrics for material quality assessment

and reuse potential.

By combining thermal imaging for subsurface analysis with computer vision for
surface assessment, the goal was to develop a comprehensive, efficient, and non-invasive
system for evaluating existing building materials. This dual approach addressed the
hidden structural context of materials and their visible surface conditions, providing a more
complete picture for salvage and reuse decisions. The research focused on developing and
integrating these technologies into practical workflows for the construction and demolition
industries. In the future, advanced sensing technologies are expected to become standard
tools in sustainable building practices. This will make material reuse easier and more
effective, contributing to a more circular economy in construction.

3.2. Methodological Framework
3.2.1. Material Context Analysis

The initial phase involved comprehensive identification and characterization of the
material within its architectural context. This study specifically focused on gypsum wall-
board used in interior partition wall assemblies. Successful salvage and material recovery
required a thorough understanding of the material’s properties and attachment systems,
elements that were either fastened to or depended on the selected material. In the case
of drywall, a critical contextual element was the stud. Consequently, stud placement and
identification became essential components of the investigation.

3.2.2. Multi-Parameter Material Assessment

The second step involved implementing multi-dimensional material characterization
protocols to identify the properties, conditions, and qualities of the materials to be sal-
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vaged. Recognizing that simplistic data were insufficient for analyzing materials that had
undergone various histories and environmental changes, it was crucial to enrich material
information because each material possessed a unique profile shaped by its environment
and use over time. To achieve a comprehensive assessment, the methodology employed
advanced sensing technologies and machine-learning algorithms to develop detailed mate-
rial profiles. This approach provided new ways to view and classify these materials, which
is essential for effective salvage and reuse decisions.

3.2.3. Integrated Sensing Framework

To address gaps in material information and enhance the ability to assess salvaged
building materials, the research implemented a novel multi-modal sensing approach that
integrated complementary technologies into a single, comprehensive tool. This multi-
spectral method combined human vision with advanced sensing technologies, each offering
unique insights into material properties. The integrated technologies included:

1. Thermal Imaging: The thermal sensing subsystem employed a Micro-Epsilon
TIMQVGA029 thermal camera (Micro-Epsilon, Ortenburg, Germany) operating with
a diagonal field of view (DFOV) of 2.04 m at a 4 m distance. This module performed
three critical functions:

• Detection of subsurface structural elements through thermal conductivity variations.
• Assessment of moisture distribution via temperature differential analysis.
• Evaluation of thermal anomalies indicating potential damage, using pattern

recognition algorithms to identify irregularities.

2. Computer Vision Systems: The RGB imaging system used an Intel RealSense camera
(Santa Clara, CA, USA) that captured visual and depth information. Key functions
performed included:

• High-resolution surface analysis at 1920 × 1080 pixels, enabling detection of
surface features as small as 0.5 mm.

• Automated damage detection and classification through TensorFlow-based neu-
ral networks.

• Quantitative assessment of surface degradation using computer vision algo-
rithms that measure crack width and length, surface discoloration area, and paint
peeling extent.

3.2.4. Integration and Calibration

The system operates through three synchronized C# programs:

• RGB capture management.
• Depth measurement via RealSense SDK.
• Thermal capture through TIM Connect SDK.

Each SDK is integrated with OpenCV for image processing, establishing a capture
frequency of one image every 5 seconds. Each SDK is integrated with OpenCV for image
processing, establishing a capture frequency of one image every 5 seconds. The various
stream types, their associated hardware/software, and the calibration methods used for
each are detailed in Table 1.

For RGB imaging, the calibration involved checkerboard calibration using OpenCV,
with color segmentation image preprocessing applied to the checkerboard images. No
calibration was necessary for depth measurement, as the depth sensor was used only as a
reference. On the other hand, the Thermal Capture stream required more involved calibra-
tion. It involved checkerboard calibration using OpenCV, with Gaussian blur preprocessing
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applied to the checkerboard images. Additionally, the checkerboard was heated so the
thermal camera could reliably detect it.

Table 1. Capture system components.

Stream Type Hardware/Software Calibration

RGB Imaging Intel RealSense SDK Checkerboard calibration using OpenCV; color segmentation
image pre-processing applied to checkerboard images.

Depth Measurement Intel RealSense SDK No calibration necessary, used as reference only.

Thermal Capture TIM Connect SDK
Checkerboard calibration using OpenCV; Gaussian blur

pre-processing applied to checkerboard images. Checkerboard
is heated in order to be detected by thermal camera.

The system employed sequential program execution to optimize data collection, with
spatial alignment capabilities enabling multi-modal data fusion. Buffer capture provisions
were incorporated into the workflow to support thermal calibration requirements. By
combining these sensing methods, the methodology aimed to develop a more comprehen-
sive understanding of salvaged materials, enabling more informed decisions about their
potential for reuse.

3.2.5. Machine-Learning Application

To enable comprehensive material assessment and predict the suitability of materials
for reuse, advanced machine-learning algorithms were employed for automated feature
extraction and classification of sensor data. The system used convolutional neural net-
works (CNNs) for RGB image analysis, applying feature identification algorithms to assess
material properties, conditions, and qualities by highlighting areas of damage.

3.3. Workflow Process

The proposed methodology follows a systematic workflow, as illustrated in Figure 1,
to achieve the objectives of non-invasive material assessment and guided deconstruction.

1. Image Capture: Data were collected using integrated sensing technologies that cap-
tured thermal images, high-resolution RGB images, and electromagnetic readings of
drywall assemblies.

2. Image Processing: Thermal images were analyzed to identify hidden structures and
moisture content, while RGB images underwent processing through object identifica-
tion algorithms to evaluate surface conditions.

3. Machine Learning Analysis: The processed RGB data were input into machine-
learning models designed to assess the suitability of materials for reuse. The models
analyzed patterns and anomalies to identify damage and potential reusability.

4. Align Images (for stud location and identification): The alignment process overlaid
RGB images with thermal images to map stud locations to their approximate positions
on the wall. This was accomplished through precise edge alignment between image
types and systematic minimization of lens distortion effects. The registration process
achieved the high spatial accuracy necessary for subsequent deconstruction planning
and execution.

5. Create Digital Twin: The digital twin was generated by translating pixels from the
collected images into geometric representations. This process integrated insights from
all sensing technologies and machine-learning analyses into a comprehensive digital
model. The resulting twin provided critical information for deconstruction strategies,
including wall dimensions, precise stud locations, and parametric definitions for
cutting areas through polygon generation.
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6. Project: A systematic framework was implemented to test the accuracy of the digital
twin against real-world conditions. This validation process included a quantitative
comparison of predicted versus actual structural element locations, verification of di-
mensional accuracy, and assessment of the model’s utility for guiding deconstruction
operation.

7. Deconstruct: The deconstruction process was executed using three distinct method-
ologies: power saw cutting, screw removal, and automated robotic deconstruction.
Each approach utilized comprehensive assessment data to implement precise removal
methods, with the primary goal of preserving drywall panel integrity throughout
the removal process. The execution integrated digital twin guidance to optimize tool
paths and removal sequences.
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and machine learning.

3.4. Validation Through Case Studies

To validate the efficacy of the proposed methodology, multiple case studies were
conducted in real-world scenarios, implementing the integrated sensing and analysis
approach. These studies provided quantitative assessments of the system’s performance in
identifying material properties and guiding deconstruction efforts.

4. Results
The analysis evaluates the effectiveness and accuracy of integrating multi-modal

sensors and computer vision technologies for non-destructive wall assembly assessment
and deconstruction guidance. By examining methodologies for detecting stud positions,
assessing material conditions, and guiding the deconstruction process, the study provides
insights into the practical applicability and viability of these technologies in real-world
construction and demolition scenarios. This section presents quantitative and qualitative
findings across four key areas: data capture accuracy, processing efficiency, implementation
effectiveness, and real-world validation through case studies.
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4.1. Data Capture Performance

Using the integrated sensing framework described in Section 3.2.3, performance anal-
ysis of the integrated sensing system revealed significant capabilities in field testing. The
system achieved a 92% success rate in perpendicular wall captures and a 78% success rate
in angled captures, with spatial resolution maintaining ±2cm accuracy in stud location de-
tection. Processing efficiency averaged 3.5 min per wall section, enabling rapid assessment
of multiple wall areas within typical construction timeframes.

Field testing demonstrated successful data collection across various interior wall con-
figurations. The study focused on interior partition walls, including those adjacent to
exterior walls. The system provided complete coverage for a standard 2.43 m × 3.65 m
(8 ft × 12 ft) wall section, and the modified capture sequences maintained effective perfor-
mance even in confined spaces. Multiple thermal captures were successfully synthesized
into cohesive imagery, while the depth sensing integration provided accurate wall dimen-
sion measurements throughout testing.

The combination of RGB, thermal, and depth data streams proved particularly effective
for comprehensive wall assessment. As demonstrated in Figure 2, the system successfully
produced integrated outputs combining high-resolution RGB imagery, synthesized ther-
mal data, and comprehensive depth information. This multi-modal approach enabled
simultaneous evaluation of surface conditions and subsurface features, providing rich
data for material assessment decisions. Tables 2 and 3 quantify the detailed performance
metrics achieved during field testing, demonstrating consistent performance across varied
environmental conditions and wall configurations.
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Figure 2. The outputs from image capture programs.

Table 2. System operating parameters.

Parameter Specification

Optimal Distance 4 m from target wall

Field of View 2.04 m diagonal at 4 m distance (Micro-Epsilon
thermal camera)

Capture Rate One image every 5 s
Coverage Requirements Minimum 8 thermal captures for 2.43 m × 3.65 m wall

Table 3. Performance metrics.

Metric Performance

Spatial Resolution ±2 cm accuracy in stud location detection
Processing Time 3.5 min average per wall section

Image Alignment Success Rate
(Perpendicular) 92%

Image Alignment Success Rate (Angled) 78%
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4.2. Data Processing and Digital Twin Generation

Following image acquisition from the Intel RealSense and thermal cameras, the analy-
sis focused on three critical aspects:

1. Stud visibility and detection clarity
2. Data precision for disassembly instruction generation
3. Environmental conditions affecting image quality

The data processing workflow, shown in Figure 1, demonstrated the systematic ap-
proach for RGB and thermal image alignment in digital 3D model creation. Image en-
hancement techniques were applied, including color vibrance adjustment and visualization
clarity improvement. Stud locations were determined using thresholding methods, gener-
ating wall edge bounding polylines represented by blue polygons. Before image stitching,
the thermal imagery underwent multiple processing steps—grayscaling, normalization,
brightness adjustment, and blurring.

A damage detection system was implemented using TensorFlow version 2.9.1 with the
Keras API to process and analyze RGB images of walls to identify potential areas of damage.
The model architecture utilized ResNet50 as the feature extractor, imported with pre-trained
ImageNet weights. This machine-learning model highlighted regions of discoloration by
running a feature detection program trained on image data. The damage detection system
implementation utilized image datasets with corresponding XML annotations for training.
The dataset comprised 30 corresponding images and masks featuring various drywall
conditions, including stains, cracks, and paint peeling. The damage detection program
was more effective at identifying structural anomalies, such as cracks, than at detecting
surface-level discolorations or stains because cracks generally have distinct edges and high-
contrast features that feature detection algorithms can easily detect. Figure 3 illustrates
the system’s enhanced capability in identifying structural anomalies with distinct edges
compared to surface discolorations.
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Figure 3. Output from the TensorFlow-based damage detection model, highlighting areas of cracks in
a previously unseen image. The red highlight outlines some of the training images that were provided
as input. The green bounding boxes are drawn around detected crack regions on a test image.

The image preprocessing protocol standardized inputs to 224 × 224 pixels, incorpo-
rating data augmentation for model robustness. The architectural framework consisted of
a pre-trained ResNet50 model with fine-tuning capabilities, enhanced by Global Average
Pooling, dropout regularization, and dense layers for bounding box prediction.

Model training was conducted using the mean-squared error (MSE) as the loss metric,
with parameters optimized via the Adam optimizer (learning rate: 1 × 10−4), utilizing
learning rate reduction and TensorBoard monitoring (TensorFlow, Mountain View, CA,
USA) during the 15-epoch training cycle. The crack detection function was designed to
take an input image and process it using a trained model. It then visualized the results
by highlighting the detected damaged areas with green rectangles. The bounding box
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coordinates were normalized and constrained within the image dimensions to ensure
accurate visualization.

The validation of the damage detection model was based on visually examining de-
tected damage regions in test images, assessing the model’s capability to identify surface
anomalies in previously unseen drywall samples. Using a ResNet50-based architecture,
the system achieved 88% accuracy in detecting cracks and 72% in identifying surface
discoloration. Although the data used in training were drywall-specific, the underlying ar-
chitecture and fundamental feature detection principles are inherently generic, suggesting
adaptability to other construction materials through transfer learning. Future implemen-
tations would benefit from including quantitative validation metrics, such as MSE, for a
more precise evaluation of predicted damage regions.

After the digital alignment of the three output images ensured consistent size and
position, each layer underwent individual export for specialized processing. A custom pixel
color selection program analyzed these layers through distinct filtering criteria for each
input type. The visible light image processing isolated the blue color channel for polygon
shape extraction. In contrast, thermal imagery processing employed an adjustable threshold
filter to identify high-intensity areas correlating to stud locations. The dimensional analysis
utilized pixel-based calculations to determine total wall area measurements.

The processed data facilitated three primary outcomes:

1. Precise stud location mapping from thermal signatures.
2. Total wall surface area calculation.
3. Salvageable drywall area estimation, accounting for stud positions and safety margins.

This computational methodology enabled systematic planning for selective dry-
wall removal while maintaining maximum material preservation between stud locations.
Tables 4–6 summarize the quantitative performance metrics achieved during the image
processing and analysis phase, demonstrating the system’s capability for accurate structural
element detection and dimensional analysis.

Table 4. Stud detection performance metrics.

Parameter Performance

Metal Stud Detection Rate 95%
Wood Stud Detection Rate 67%
Average Position Deviation ±5 cm

Table 5. Damage detection system performance.

Parameter Accuracy

Crack Detection 88%
Surface Discoloration Detection 72%

Table 6. TensorFlow model performance.

Metric Value

Training Accuracy (30-image dataset) 91%
Validation Accuracy (unseen images) 86%

Processing Speed 1.2 s/image

The data acquisition and processing methodology extends beyond traditional scan-
to-BIM workflows. While conventional approaches typically capture only geometric in-
formation, this multi-modal sensing system enables the creation of enriched digital twins
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by extracting detailed material condition data, subsurface structural information, and
potential reuse characteristics. This comprehensive digital documentation can be integrated
into existing BIM systems to enhance deconstruction planning and material tracking. For
example, thermal imaging data revealing stud locations and RGB analysis identifying
surface conditions can be incorporated as parametric data within BIM elements, providing
valuable information for deconstruction sequencing and material recovery assessment.

Image Preprocessing and Noise Reduction

The optimization of thermal imagery for stud detection required specific preprocessing
techniques based on environmental conditions. Multiple factors influenced image quality,
including ambient temperature, stud material composition, and environmental context.
The processing pipeline implemented multiple correction stages to address these variables.

The preprocessing methodology used a sequence of image adjustments calibrated to
specific site conditions. These included brightness correction, normalization techniques,
and targeted blurring algorithms. The case studies demonstrated distinct preprocessing
requirements. Due to varying environmental conditions, thermal image corrections for the
office environment differed significantly from those required in the high school case study.

Similar preprocessing approaches could be applied to damage detection and the pro-
cessing of RGB images. Implementing denoising filters, adaptive histogram equalization,
and multi-scale normalization techniques established consistent baseline image quality for
analysis. This systematic approach to environmental noise management can enhance the
reliability of material assessment across diverse building conditions.

4.3. Projection and Deconstruction Methods

This section outlines the projection and deconstruction steps shown in Figure 1 and
elaborates on the methodology for translating processed imagery into physical decon-
struction guidance. Three distinct deconstruction techniques were assessed for optimal
material recovery.

4.3.1. Projection System

The projection phase validated the accuracy of thermal and RGB image mapping for
physical deconstruction guidance. The digital twin data, derived from thermal and RGB
analysis, enabled the projection of identified structural elements onto the wall surface. Figure 4
demonstrates how this projection system created visual guidance for workers, revealing
subsurface structural elements. The critical projection system components included:

• Calibrated projector implementation for alignment accuracy between the digital model
and the physical wall.

• Color-coded visualization system:

# Green zones indicate safe-cutting areas.
# Red zones mark stud locations and restricted cutting areas.

4.3.2. Deconstruction Methods

This research explored three distinct deconstruction methods, each offering different
advantages in terms of material salvage and efficiency.

Manual Deconstruction Approaches

Method 1: Projection-Guided Saw Cutting

In this method, power saw cutting followed projected polygon boundaries between
identified stud locations. This method achieved rapid drywall section removal but resulted
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in smaller salvaged pieces due to necessary cuts near stud locations. Material recovery
rates varied based on stud spacing and wall dimensions (Figure 4).
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Method 2: Projection-Guided Screw Removal

This method employed projected stud locations combined with magnetic screw detec-
tion for fastener removal. Implementation required magnetic detection tools for precise
fastener location, followed by systematic screw removal along identified stud lines and
controlled drywall extraction from attachment points. This method demonstrated superior
material preservation through full-sheet recovery capabilities.

The experimental data showed viability in both manual deconstruction methods, with
the screw removal technique achieving better drywall recovery rates. However, selecting
the optimal deconstruction method depends on project-specific parameters, including time
constraints, wall assembly conditions, and material preservation requirements.

Robotic Deconstruction System

Building upon the manual deconstruction methods, the experimental scope expanded
to incorporate robotic deconstruction techniques. This automated approach evaluated
the feasibility of reduced human intervention through advanced robotics implementation,
enhancing both efficiency and precision in the deconstruction process. The experimental
results demonstrated the potential of current technological capabilities while establishing
foundational parameters for a fully integrated, turn-key robotics software, and hardware
platform. The developed system architecture incorporated sensor integration and auto-
mated control systems, providing a comprehensive framework for industrial-scale decon-
struction applications. Figure 5 illustrates the key components and operational sequence of
robotic integration.
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Workcell Setup

The experimental setup utilized an ABB IRB 4600 industrial robot (ABB Engineering,
Shanghai, China) with a 40 kg payload capacity and a 2.55 m reach, controlled through
an IRC5 system running external guided motion. The robot was securely mounted on an
acorn welding table, providing stability and mobility via pallet jack repositioning. Primary
cutting operations employed a high-speed electric spindle manufactured by Elettromec-
canica Giordano Colombo (Carate Brianza, Italy), operating at a maximum frequency of
400 Hz and delivering up to 24,000 RPM. The cutting tool consisted of a 12.7 mm (half-
inch) high-speed steel square end mill featuring two flutes. The milling operation was
programmed to cut the identified section of drywall, ensuring minimal damage to the
material and maximizing the area that could be salvaged while maintaining structural
integrity. Following the milling process, a Schmalz vacuum area gripping system with an
integrated pneumatic vacuum generator was deployed to securely attach to the cut piece of
drywall, facilitating precise and controlled extraction from the wall, as demonstrated in
Figure 5 (middle and right images).

The robotic setup, including all necessary components and software, is priced at USD
67,000. The robot has positional repeatability of 0.06 mm and path repeatability of up to
0.28 mm. With maximum axis speeds ranging from 175◦/s to 360◦/s, the ABB IRB 4600 is
engineered for high precision and rapid execution, which is essential for reducing cycle
times and maximizing production efficiency. ABB Industrial robots’ high repeatability
ensures operations can be conducted with consistent accuracy, which is crucial for tasks
like milling, where exact dimensions are critical.

During the milling experiments, operations were conducted at a conservative speed
of 100 mm/s for testing purposes, but there is potential to increase this speed significantly
through further process optimization. At the conservative rate of 100 mm per second,
the robot can cut out approximately 439 square meters of drywall in 1 h. For the tasks at
hand, the robot was configured to mill areas up to 5 m2 from a single stationary position.
To accommodate larger panels or extend the operational range without compromising
precision, the system can be adapted with additional mobility solutions. Integration of a
track, gantry, or mobile platform enables the robot to traverse larger distances smoothly,
expanding its capability to handle bigger or irregularly shaped materials without the need
for manual repositioning. This modular approach to workspace configuration allows for
scalable automation tailored to project-specific requirements.

The work cell safety implementation adhered to industry standards through multi-
ple integrated systems to ensure operator safety and compliance. Perimeter protection
consisted of polycarbonate hard guarding installed around the work cell’s perimeter,
complemented by a door-integrated safety interlock system. This interlock mechanism
automatically powered down both the robot and the spindle systems upon door activation
during operation, preventing unauthorized access and accidental exposure to operational
components or moving parts. Additional safety protocols incorporated ABB’s SafeMove
technology, an advanced safety solution providing safety-certified monitoring of robotic
motion, including tool positioning, standstill supervision, and integrated speed limitation
features. The SafeMove system established defined operational zones, implementing col-
lision prevention parameters for the floor, ceiling, and surrounding structural elements,
ensuring operational safety while maintaining workflow efficiency.

Due to the advanced safety measures in place, the safety risk within this robotic work
cell is minimized. However, it is crucial to conduct regular safety audits and continuous
training for all operators. These practices ensure that safety protocols adapt to any changes
in operational procedures or configurations and that all personnel are aware of how to act
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safely around the robotic system. Moreover, maintaining a routine check on all safety fea-
tures for their operational integrity is essential for sustaining a safe working environment.

For labor requirements, skilled integrators are needed to install and configure the
industrial robot and associated equipment. This includes mechanical installation, electrical
integration, and initial software setup. Additional personnel must be trained in operating
the robotic equipment and safety protocols specific to the robotic environment. Due to
the complexity of the system, the initial setup may take several days. However, once the
system is running, the labor required to operate the robotic work cell is significantly reduced
compared to manual operations. A couple of skilled operators can manage the system,
overseeing the robot’s performance and intervening only when calibration, adjustments, or
troubleshooting is necessary.

Effective robotic operations require careful consideration of physical space, integration
with other systems, and environmental controls. These factors must be planned during the
workspace design phase to accommodate all necessary equipment and safety features with-
out restricting the robot’s operational capabilities. Depending on the end effector and other
auxiliary stems, the workspace must have provisions for power supplies and pneumatics
lines. The installation of safety barriers and the integration of safety interlocks also dictate
spatial requirements, ensuring ample room for these systems without compromising their
functionality or accessibility.

Automated Robotic Deconstruction Workflow Using CAD-Informed Path Planning

A CAD-based approach was employed to optimize the robotic deconstruction process
using a robotics software research platform integrated with Autodesk Fusion through
Autodesk Platform Services [30], as illustrated in Figure 5 (left image). This methodology
enhanced operational accuracy and streamlined the transition from planning to execution.

The platform enabled comprehensive digital twin modeling of all work cell elements,
including the industrial robot, end effector, target wall, and peripheral structural compo-
nents. Data from thermal and RGB image analyses were integrated into the CAD model of
the wall, facilitating precise localization of the robot’s base coordinate system relative to
environmental elements. This spatial registration ensured that all subsequent robot actions
were accurately oriented and aligned in both the simulation and the physical environment.

Using the detailed CAD data, critical structural elements such as studs and regions
of drywall damage were identified and localized within the wall’s coordinate system.
Toolpaths were generated that avoided these elements, optimizing the salvageable drywall
area. This strategic planning phase eliminated the need for manual projection, depicted in
the Projection step in Figure 1, by automating the path generation process.

The CAD-informed path planning system translated digital twin data into executable
robotic commands. Comprehensive simulation capabilities enabled preemptive verifica-
tion, troubleshooting, and optimization of robotic trajectories before physical deployment.
The control architecture incorporated dynamic adjustment capabilities through real-time
environmental feedback, ensuring high precision and adaptability during deconstruction.
This responsive system enhanced the robot’s ability to execute tasks with greater accuracy
and adapt to on-site variables, which is critical in dynamic environments with potential
variability and change.

Future system development includes integrating advanced vision systems to provide
enhanced real-time sensing capabilities, facilitating process optimization, and improving
collision avoidance protocols. These implementations will augment safety redundancy
while maintaining responsiveness to deviations from the predefined digital model. The
enhanced error-handling framework will enable the robot to autonomously adjust its oper-
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ations and recover from unexpected changes or obstacles, thereby maintaining operational
efficiency and safety without human intervention.

The advanced workflow improved deconstruction efficiency by eliminating the man-
ual projection step and enhanced operational safety and precision. By utilizing CAD data
to inform robotic path planning directly, each movement was optimized for speed and
accuracy, significantly improving material recovery rates and operational safety metrics.

Table 7 presents a comprehensive comparison of deconstruction method performance
metrics.

Table 7. Comprehensive performance analysis of manual and robotic deconstruction methods.

Performance Metric Method 1: Saw Cutting Method 2: Screw Removal Method 3: Robotic System

Processing Speed 10 min/section 15–18 min/section 100 mm/s (439 m2/h)
Material Recovery Rate 75–80% 100% 95% with precision cutting

Precision Accuracy 80% 100% at fastener points 100%
Equipment Cost Low (<USD 500) Low (<USD 200) High (USD 67,000)

Skill Level Required Minimal Minimal Technical
expertise required

Workspace Constraints Minimal Minimal 5 m2 from fixed position

Safety Risk Level Moderate (saw operation) Low (hand tools) Minimal (automated
safety systems)

Maximum Panel Size Limited by stud spacing Full sheet recovery 5 m2 per position
Labor Requirements 1–2 workers 1–2 workers 2 skilled operators

Environmental Control Minimal Minimal Climate-controlled
space required

Setup Time Immediate Immediate Several days of initial setup

Operational Flexibility High High Limited by
workspace bounds

Material Preservation
Produces smaller sections

due to saw kerf and
stud proximity.

Maximum preservation
potential; enables recovery

of full-sized sheets.

Optimized preservation
through precise cutting

paths and
controlled extraction.

Applicability

Suitable for rapid
demolition projects with

flexible material
recovery targets.

Optimal for high-value
material recovery in

accessible conditions.

Ideal for large-scale
industrial applications

with consistent wall
configurations.

4.4. Case Studies

Two on-site field tests were conducted to validate the methods for stud type and
location identification, as illustrated in Figures 6 and 7. These case studies evaluated
system performance and aimed to understand the practical challenges associated with
scanning and processing images under real-world conditions.
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Figure 6. Multi-modal wall analysis sequence from commercial office implementation: (a) RGB
captures, (b) polygon highlighting from edge detection output, (c) thermal imaging data (original),
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placing studs on the detected stud areas based on the pixel color.
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Figure 7. Multi-modal wall analysis sequence from an educational facility: (a) RGB captures, (b) poly-
gon highlighting from edge detection output, (c) thermal imaging data (original), (d) processed
thermal image data, (e) thermal image pixel extraction, (f) resultant digital model placing studs on
the detected stud areas based on the pixel color.

4.4.1. Case Study 1: Office Wall Scanning

The first field validation occurred in a 2010s-era commercial office building in Boston,
examining five distinct wall sections from June 2024 to July 2024. The study evaluated
scanning methodologies through varied hand motion patterns while maintaining consistent
processing protocols. Scanning efficiency analysis revealed distinct performance varia-
tions between motion protocols. Horizontal scanning patterns demonstrated increased
capture duration and presented significant challenges in image alignment, particularly
due to the homogeneous nature of wall surfaces lacking distinctive features for algorith-
mic stitching reference points. In contrast, vertical scanning motions exhibited superior
performance on tall, narrow wall sections, facilitating more efficient image alignment and
stitching processes.

The image processing workflow achieved successful stitching across all captured
samples through the implementation of reference markers, which significantly enhanced
alignment accuracy. Subsequent analysis in Grasshopper enabled comprehensive digital
twin generation for each wall section. Pixel extraction identified areas with consistent
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thermal signatures by segmenting pixels based on brightness or color values. The process
isolated regions with similar thermal properties, enabling the detection of structural ele-
ments like studs through distinct thermal patterns. Validation of the digital models against
subsurface scan data confirmed accurate scaling of stud spacing measurements, demon-
strating the methodology’s precision in structural element mapping. Figure 6 illustrates
the complete data acquisition and processing sequence, including RGB capture, thermal
imaging, and digital model generation for all five wall sections. Tables 8 and 9 present
the implementation parameters and quantify scanning efficiency and processing accuracy
metrics achieved during this validation phase.

Table 8. Office wall scanning implementation parameters.

Parameter Specification

Facility Type Commercial office, Boston (constructed 2010s)
Duration June–July 2024

Sample Size 5 walls
Construction Type Metal stud framing
Scanning Protocol Variable hand motion patterns
Processing Method Standardized across all samples

Table 9. Key performance findings from office scanning.

Assessment Category Key Findings

Horizontal Scanning
Extended capture duration

Alignment challenges during stitching
Limited effectiveness with homogeneous surfaces

Vertical Scanning
Enhanced stitching accuracy

Improved efficiency for narrow wall sections
Superior alignment outcomes

Image Processing
Successful image stitching with marker assistance

Digital twin generation achieved
Verified stud spacing accuracy through subsurface validation

4.4.2. Case Study 2: High School Wall Scanning

The second field validation examined eight wall sections at a high school facility
scheduled for demolition, with data collection completed within 75 min. Table 10 summa-
rizes the implementation parameters, including facility characteristics, sample size, and
the scanning protocol employed. The developed scanning rig demonstrated enhanced
maneuverability and operational efficiency in the demolition environment, enabling rapid
multi-wall assessment. However, the wood stud construction presented significant chal-
lenges for thermal imaging effectiveness, resulting in reduced thermal contrast compared
to metal stud implementations in the first case study.

Table 10. High school wall scanning implementation parameters.

Parameter Specification

Location Secondary school scheduled for demolition
Duration 75 min total scanning time

Sample Size 8 wall sections
Construction Type Wood stud framing
Processing Method Thermal-RGB protocol

The low thermal contrast characteristics of wood frame construction significantly
impacted data extraction capabilities and digital twin generation accuracy. The established
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processing methodology, which had performed effectively with metal stud construction,
exhibited reduced effectiveness in isolating structural elements from the thermal signatures
of wood framing members. Table 11 quantifies these performance limitations across
scanning system efficiency, thermal imaging constraints, material impact factors, and
processing outcomes.

Table 11. Key performance findings from high school scanning.

Assessment Category Key Findings

Scanning System
Performance

Enhanced rig maneuverability in the
demolition environment

Efficient multi-wall scanning capability
Effective equipment mobility between scan locations

Thermal Imaging
Limitations

Minimal thermal contrast in wood stud construction
Reduced feature extraction capability

Limited digital twin accuracy due to low thermal signatures

Material Impact
Analysis

Significantly reduced detection rates compared to
metal studs

Processing algorithm limitations with wood construction
Thermal signature variations between construction types

Processing Outcomes
Reduced accuracy in structural element mapping

Limited effectiveness of standard processing protocols
Decreased reliability in digital twin generation

Figure 7 presents representative data acquisition and processing sequences for two of
the eight analyzed wall sections, illustrating the challenges encountered with thermal
contrast and feature extraction.

4.4.3. Cost–Benefit Analysis

A detailed cost–benefit analysis comparing demolition to deconstruction methods
was conducted on a 90-square-foot wall section at Stoneham High School. Cost data
were sourced from RSMeans Online [49] using commercial new construction unit costs,
standard union labor rates, and Boston location factors. Material handling costs include
collection, transportation, storage, processing, and disposal expenses. Tables 12–16 present
a comprehensive analysis of demolition costs, deconstruction costs, total costs and benefits,
and overall cost–benefit comparisons.

The baseline demolition approach cost USD 102.11 with no material recovery benefit.
Analysis revealed that while manual deconstruction methods required higher initial invest-
ment, both approaches demonstrated positive net benefits. The saw-cutting method (78%
material retrieval) yielded a net benefit of USD 71.92 despite higher total costs (USD 199.37).
In comparison, the screw removal method (100% material retrieval) achieved a net benefit
of USD 121.01 with total costs of USD 226.80.

These net benefits were realized through multiple factors:

• Material savings from avoided new drywall purchases.
• Waste handling savings from reduced transportation and processing.
• Disposal savings from avoided landfill fees.
• Carbon emission reductions through material reuse.
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Table 12. Demolition phase costs and environmental impact.

Demolition Parameters Baseline
Demolition

Deconstruction Method 1:
Saw Cutting

Deconstruction Method 2:
Screw Removal

Disposal Quantity (SF) 90 19.80 -
Disposal Quantity (Tons) 0.10 0.02 -

Demolition Duration (Hours) 0.72 0.16 -
Demolition Duration (Minutes) 43.200 9.504 -

CO2 Emissions from Disposal (kgCO2) 1.80 0.40 -
Labor Costs (USD) 49.50 10.89 -

Overhead and Profit (USD) 24.30 5.35 -
Waste Material Handling Costs (USD) 20.29 4.46 -

Waste Dump Charges (USD) 8.02 1.76 -

Table 13. Deconstruction phase costs.

Deconstruction Parameters Baseline
Demolition

Deconstruction
Method 1: Saw Cutting

Deconstruction Method
2: Screw Removal

Reusable Quantity (SF) - 70.20 90
Reusable Quantity (Tons) - 0.08 0.10

Deconstruction Duration (Hours) - 2.55 6.55
Deconstruction Duration (Minutes) - 153.16 392.73

Labor Costs (USD) - 41.42 53.10
Overhead and Profit (USD) - 18.95 24.30

Salvaged Material Post-Processing Costs (USD) - 116.53 149.40

Table 14. Total cost summary.

Costs Baseline Demolition Deconstruction Method 1:
Saw Cutting

Deconstruction Method 2:
Screw Removal

Total Costs (USD) 102.11 199.37 226.80
Total Labor (Hours) 0.72 2.71 6.55

Total Carbon (kgCO2) 1.80 0.40 0.00

Table 15. Total benefit summary.

Benefits Baseline
Demolition

Deconstruction Method 1:
Saw Cutting

Deconstruction Method 2:
Screw Removal

Material Savings (USD) - 217.62 279.00
Waste Handling Savings (USD) - 15.83 20.29

Disposal Savings (USD) - 6.25 8.02
Carbon Offsets (kg CO2) - 31.59 40.50

Total Estimated Benefits (USD) - 271.29 347.81

Table 16. Total cost–benefit analysis summary.

Baseline Demolition Deconstruction Method 1:
Saw Cutting

Deconstruction Method 2:
Screw Removal

Total Costs (USD) 102.11 199.37 226.80
Total Benefits (USD) - 271.29 347.81
Net Benefits (USD) (102.11) 71.92 121.01
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Carbon offset calculations indicate that drywall reuse can achieve approximately
0.45 kg CO2 savings per square foot. This figure combines emissions avoided from
new drywall production (0.43 kg CO2/SF for lifecycle stages A1–A3) [50] and disposal
(0.02 kg CO2/SF for stages C1–C4) [51], based on environmental product declaration data
and disposal impact studies.

The analysis demonstrates that while deconstruction methods require 2.71–6.55 labor
hours compared to 0.72 h for demolition, significant material recovery benefits offset the
additional time investment. Notably, these labor calculations were based on observations
of novice researchers and do not account for potential efficiency gains through learning
and experience curves.

While the robotic deconstruction system requires higher initial equipment investment
(USD 67,000) and climate-controlled space, it offers potential long-term economic advan-
tages through increased processing speeds (439 m2/h) and consistent 95% material recovery
rates. Future studies should conduct a detailed return-on-investment analysis comparing
robotic implementation costs against labor savings and material recovery benefits on the
commercial scale. This analysis would provide valuable insights into automation viability
across different project scales and material recovery scenarios.

A comprehensive breakdown of the cost–benefit analysis methodology and calcula-
tions can be found in File S1.

4.5. Digital Model Accuracy Analysis

A detailed accuracy assessment of the digital models was conducted to evaluate sys-
tem reliability across various capture scenarios. Figure 8 presents the correlation between
capture methodologies, processing approaches, and resultant accuracy metrics. The analy-
sis quantified accuracy variations based on capture methods and image distortion levels.
The validation methodology evaluated digital twin accuracy through a systematic four-
phase analysis. Initial computations established predicted stud spacing patterns, followed
by an assessment of various capture techniques, including single-shot, double-shot, perpen-
dicular, and angled image acquisition. Image processing protocols, detailed in Section 4.2,
implemented calibration and perspective correction where required.

Physical validation using stud detection equipment provided ground-truth measure-
ments for accuracy calculation. Mean deviation percentages were derived by measuring
displacement between predicted and actual stud positions, with results normalized against
total stud count to establish overall system accuracy metrics. Table 17 quantifies the in-
fluence of capture methods, image distortion, material properties, and environmental
conditions on these accuracy measurements, demonstrating superior performance with
vertical scanning motions and perpendicular wall captures.

The experimental demonstrations detailed in Sections 4.3 and 4.4 revealed both the
capabilities and limitations of the methodology. The accuracy analysis presented in Table 17
demonstrated the critical importance of optimized scanning techniques while identifying
areas requiring algorithmic refinement, particularly for wood stud detection and distorted
image processing scenarios. While the system achieved high accuracy under optimal
conditions, establishing a foundation for practical deconstruction applications, the analysis
highlighted opportunities for enhanced reliability across diverse building types and envi-
ronmental conditions. These findings support the continued refinement of the scanning
and analysis protocols to develop a robust implementation framework suitable for varied
deconstruction scenarios.
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of locations across all predicted stud positions for the wall being tested).

Table 17. Digital model accuracy influencing factors.

Process Parameter Performance Observations

Capture Method Vertical scanning: Enhanced accuracy
Horizontal scanning: Reduced precision

Image Distortion Perpendicular captures: Maximum accuracy
Angled captures: Increased deviation

Material Type Metal studs: High thermal contrast, superior detection
Wood studs: Limited thermal differentiation

Environmental Conditions Enhanced clarity with larger thermal gradients
Optimal interior-exterior temperature differential: >5 ◦C

Digital Twin Fidelity Metal stud spacing accuracy: ±50.8 mm (±2′′)
Calibrated capture success rate: 95%
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5. Discussion
The discussion synthesizes findings from industry interviews, technical implementa-

tion challenges, and future development prospects to evaluate technological solutions for
sustainable construction and demolition practices.

5.1. Industry Insights

Semi-structured interviews with industry professionals from the construction and
demolition sectors revealed significant limitations in current assessment practices. Industry
professionals reported that traditional visual inspection and manual probing methods are
time-consuming, often requiring multiple passes to identify stud locations, assess material
conditions, and document findings. The professionals also emphasized three critical factors
affecting material reuse potential: accurate stud type identification, asbestos detection, and
mold assessment.

The integrated sensing system developed in this research demonstrated capabilities
that address some of these industry challenges. The multi-modal approach achieved 92%
accuracy in perpendicular captures while processing wall sections in an average of 3.5 min.
While accuracy decreased to 78% for angled captures, the system maintained simultaneous
assessment capability for both surface and subsurface conditions in a single pass. This
advancement in assessment efficiency and accuracy directly addresses the time and labor
constraints identified by industry professionals.

While effective for distinguishing between wood and metal studs, current thermal
imaging technology demonstrates significant limitations in detecting hazardous materials
and assessing material conditions. Emerging advanced sensing technologies show promise
in addressing these detection limitations. Recent developments in short-wave infrared
(SWIR) spectral ranges demonstrate particular potential for hazardous material detection.
Research has shown that various construction materials exhibit distinctive spectral charac-
teristics in specific wavebands, enabling their identification and characterization. While
current commercially available sensors operate in limited spectral ranges, next-generation
technologies could expand detection capabilities across broader wavelength bands.

The integration of advanced sensing technologies into existing multi-modal work-
flows addresses key challenges identified through industry interviews while supporting
the development of more comprehensive material assessment systems. These enhanced
capabilities promote efficient and sustainable industry practices by enabling better iden-
tification of salvageable materials and ensuring safety through improved detection of
hazardous substances.

5.2. Implementation Challenges and Technical Feasibility

The practical implementation of these innovative approaches has revealed several
critical challenges that require careful consideration. A primary concern involves physical
constraints in data capture, where the effectiveness of the imaging system significantly
depends on proper rig positioning. While the increased distance between the rig and the
wall generally yields superior results, real-world settings often present space limitations
and cluttered environments that compromise ideal positioning.

The case studies demonstrated considerable variability in data quality across different
environments. For instance, scans conducted at the high school demolition site yielded
minimal usable data due to suboptimal conditions despite substantial effort invested
in the scanning process. In contrast, scans performed at the Autodesk office featuring
metal framing produced accurately processable data for all but one wall, which was
excluded due to excessive thermal patches in the kitchen area. This disparity highlights the
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significant impact of building materials and construction methods on current imaging and
processing techniques.

The data processing pipeline presents additional technical challenges requiring atten-
tion. While programmatic solutions for image processing and polygon highlighting have
been successfully implemented, several critical steps remain manual, including matching
RGB images to thermal images and damaging polygons. These current thermal image
stitching limitations require manual interventions, which not only reduce efficiency but
also introduce potential inconsistencies in the workflow.

5.3. Recommendations for Future Research

Based on the findings and challenges identified in this study, several key areas war-
rant further investigation to advance the field of automated construction and demolition
material assessment. Future research should focus on developing and validating advanced
imaging algorithms to eliminate manual processing steps and enhance system reliability.
Specifically, research efforts should prioritize automated thermal image stitching algo-
rithms and RGB-to-thermal image matching techniques to create a more streamlined and
efficient workflow.

Future studies should expand environmental condition testing beyond interior par-
titions. While this research demonstrated effective sensing capabilities for interior walls,
including those with exterior exposure, comprehensive testing across different environ-
mental conditions would provide valuable insights into system reliability and potential
applications. Investigating temperature differential impacts on thermal contrast could
inform optimization strategies for varied interior wall configurations.

Additional research is needed to improve the accuracy and robustness of damage
detection models. This includes expanding training datasets to encompass a broader range
of material conditions, damage types, and environmental variables. It is also important
to note that the training set used for damage detection consisted of images of white walls
only. The training set would need to include a broader diversity of finishes and colors to
accurately detect damage in scenarios where drywall is colored with darker tones, glossy
finishes, and other more nuanced qualities. Future studies should also explore adaptive
imaging techniques that maintain consistent performance across varying environmental
conditions and building configurations. Developing integrated data capture and processing
tools represents another crucial research direction, potentially leading to more efficient and
user-friendly systems for industry implementation.

Material detection capabilities require further refinement through dedicated research
efforts, particularly for wood stud identification. Future studies should investigate novel
sensing approaches and detection algorithms optimized for different building materials
and construction methods. This research direction would contribute to more reliable and
comprehensive material assessment capabilities across diverse construction scenarios.

The development of integrated robotic automation systems presents a promising
avenue for future research. Studies should examine the integration of advanced vision sys-
tems, real-time sensing capabilities, and autonomous error-handling frameworks. Research
efforts should focus on optimizing robotic path planning algorithms, enhancing collision
avoidance protocols, and developing robust error recovery mechanisms. Investigations into
human–robot interaction and safety protocols within construction environments would
also contribute valuable insights for system implementation.

Future research initiatives should additionally consider the economic and practical
implications of these technological developments, including cost–benefit analyses, imple-
mentation strategies, and industry adoption barriers. Longitudinal studies examining the
long-term performance and reliability of automated systems in real-world construction
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and demolition settings would provide valuable data for continued system refinement
and optimization.

6. Conclusions
This research demonstrated the technical viability of contactless material assessment

for building deconstruction by integrating multi-modal sensing technologies and machine
learning. The experimental results established quantifiable benchmarks for automated
assessment systems, with the sensing system achieving significant detection accuracy across
multiple modalities. Performance metrics showed 95% accuracy in metal stud detection
and 67% in wood stud detection, with success rates of 92% for perpendicular wall capture
and 78% for angled capture. The system maintained a spatial resolution of ±2 cm accuracy
in stud location detection while processing wall sections in an average of 3.5 min.

The damage detection system demonstrated robust performance through multiple
validation metrics. Testing revealed 88% accuracy in crack detection and 72% in surface
discoloration detection. The machine-learning model achieved 91% training accuracy
on the 30-image dataset and maintained 86% validation accuracy on previously unseen
images. These results validated the system’s ability to reliably identify and classify material
conditions across diverse scenarios.

The robotic implementation demonstrated the feasibility of automated material re-
covery. It operated at speeds of 100 mm/s and covered 439 square meters per hour. The
system achieved positional repeatability of 0.06 mm and path repeatability up to 0.28 mm,
enabling precise material extraction with maximum panel sizes of 5 m2 per position. These
specifications showed the potential for scaled implementation in industrial applications.

Case studies validated the system performance in real-world conditions, though
significant variations exist between different building types. Metal stud construction
showed superior detection rates compared to wood frame buildings, indicating the need for
further development in wood stud detection algorithms. Environmental factors, including
surface colors and temperature differentials, impacted system performance and required
consideration during implementation.

While this research demonstrates promising results through non-invasive multi-modal
sensing methods, future work should include systematic comparisons with invasive inspec-
tion methods. Direct correlation studies between sensor readings and physical verification
through conventional destructive testing would further validate the accuracy of the pro-
posed methodology. Such validation studies would strengthen the reliability assessment of
contactless methods as alternatives to traditional invasive inspection techniques.

The demonstrated integration of thermal imaging, RGB analysis, and depth sensing
establishes a new benchmark for automated material assessment in construction. While cer-
tain limitations remain, particularly in wood stud detection and varied surface conditions,
the system’s performance validates the potential for automated approaches to transform
material recovery and reuse in construction. Future research priorities include expanding
the machine-learning dataset to include diverse building conditions, developing enhanced
detection capabilities for wood frame construction, and establishing standardized protocols
for system implementation across varying environmental conditions.
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