Conference on Genetic and Evolutionary Computation 2022
A Discretization-Free Metric For Assessing Quality Diversity Algorithms
Abstract
A Discretization-free Metric For Assessing Quality Diversity Algorithms
Paul Kent, Juergen Branke, Adam Gaier, Jean-Baptiste Mouret
Annual Conference Companion on Genetic and Evolutionary Computation 2022
While Quality-Diversity algorithms attempt to produce a set of high quality solutions that are diverse throughout descriptor space, in reality decision makers are often interested in solutions with specific descriptor values. In this paper we suggest that current methods of evaluating Quality Diversity algorithm performance do not properly account for a decision maker’s preference in a continuous descriptor space and suggest three approaches that attempt to capture the real-world trade-off between a solution’s objective performance and distance from a desired set of target descriptors. In this paper we propose a randomised metric, a process of Monte-Carlo sampling of $n$ target points in descriptor space and a small number of random weights that represent different tolerances for mis-specification in a solution’s descriptor values. This sampling allows us to simulate the requirements of all possible combinations of target-tolerance pairs and, by taking sufficient samples, estimate average performance. We go on to formulate three simple methods for comparing average performance of algorithms; Continuous Quality Diversity score (CQD) and Hypervolume of the objective/distance Pareto front. We show that these measures are simple to implement and robust measures of performance without introducing artificial discretisation of the descriptor space.
Download publicationAssociated Researchers
Paul Kent
Warwick University
Juergen Branke
Warwick Business School
Jean-Baptiste Mouret
Inria, CNRS, Université de Lorraine
Related Resources
2023
Challenges in Extracting Insights from Life Cycle Assessment Documents During Early Stage DesignKnowledge transfer from LCA documents and building a structured…
2024
HG-CAD: Hierarchical Graph Learning for Material Prediction and Recommendation in Computer-Aided DesignThis work presents a new Machine Learning architecture to support…
2021
Inferring CAD Modeling Sequences using Zone GraphsIn computer-aided design (CAD), the ability to “reverse engineer” the…
2022
Data Visualization and Visual AnalyticsVisual data representations leverage the power of human perception to…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us