Publication
A Multi-cellular Developmental Representation for Evolution of Adaptive Spiking Neural Microcircuits in an FPGA
Abstract
It has been shown that evolutionary and developmental processes can be used for emergence of scalability, robustness and fault-tolerance in hardware. However, designing a suitable representation for such processes is far from straightforward. Here, a bio-inspired developmental genotype-phenotype mapping for evolution of spiking neural microcircuits in an FPGA is introduced, based on a digital neuron model and cortex structure suggested and verified previously by the authors. The new developmental process is based on complex multi-cellular protein-protein and gene-protein interactions and signaling. Suitability of the representation for evolution of useful architectures and its adaptability is shown through statistical analysis and examples of scalability, modularity and fault-tolerance.
Download publicationAssociated Researchers
Related Resources
See what’s new.
2024
Project Reframe: A Leap into VR Motion Capture and EditingExplore Project Reframe for recording and editing motion in Virtual…
2024
Connect with our Research Connections Series: Scan-to BIMLearn about how the Scan-to-BIM process can help architects…
2011
Design and Evaluation of a Command Recommendation System for Software ApplicationsWe examine the use of modern recommender system technology to aid…
2002
Computational Anatomy and BiomechanicsComputational anatomy incorporates the use of geometric- and…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us