Publication 2023
BOP-Elites
A Bayesian Optimisation Approach to Quality Diversity Search with Black-Box descriptor functions
Fig. 3. A visualisation of the BOP-Elites algorithm
Abstract
BOP-Elites: A Bayesian Optimisation Approach to Quality Diversity Search with Black-Box descriptor functions
Paul Kent, Adam Gaier, Juergen Branke, Jean-Baptiste Mouret
Quality Diversity (QD) algorithms such as MAP-Elites are a class of optimisation techniques that attempt to find many high performing points that all behave differently according to a user-defined behavioural metric. In this paper we propose the Bayesian Optimisation of Elites (BOP-Elites) algorithm. Designed for problems with expensive black-box objective and behaviour functions, it is able to return a QD solution-set after a relatively small number of samples. BOP-Elites models both objective and behavioural descriptors with Gaussian Process surrogate models and uses Bayesian Optimisation strategies for choosing points to evaluate in order to solve the quality-diversity problem. In addition, BOP-Elites produces high quality surrogate models which can be used after convergence to predict solutions with any behaviour in a continuous range. An empirical comparison shows that BOP-Elites significantly outperforms other state-of-the-art algorithms without the need for problem-specific parameter tuning.
Download publicationAssociated Researchers
Paul Kent
Warwick University
Jean-Baptiste Mouret
Inria, CNRS, Université de Lorraine
Juergen Branke
Warwick Business School
Related Resources
2023
Language Model Crossover: Variation through Few-Shot PromptingPursuing the insight that language models naturally enable an…
2021
Building-GAN: Graph-Conditioned Architectural Volumetric Design GenerationVolumetric design is the first and critical step for professional…
2019
Demo: Semantic Human Activity Annotation Tool Using Skeletonized Surveillance VideosHuman activity data sets are fundamental for intelligent activity…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us