Publication
Convolutional Neural Networks for Steady Flow Approximation
Abstract
In aerodynamics related design, analysis and optimization problems, flow fields are simulated using computational fluid dynamics (CFD) solvers. However, CFD simulation is usually a computationally expensive, memory demanding and time consuming iterative process. These drawbacks of CFD limit opportunities for design space exploration and forbid interactive design. We propose a general and flexible approximation model for real-time prediction of steady non-uniform laminar flow in a 2D and 3D domain based on convolutional neural networks (CNNs). We explored alternatives for the geometry representation and the network architecture of CNN. We show that convolution neural networks can estimate the velocity field two orders of magnitude faster than a GPU-accelerated CFD solver or four orders of magnitude faster than a CPU-based CFD solver at a cost of a low error rate. Our results show that we can reduce the average time to generate a fully converged CFD result from 82 seconds on a single core CPU to 7 milliseconds by leveraging both CNN and GPU at the cost of a low 1.98% to 2.69% error rate. This approach can provide immediate feedback for real-time design iterations at the early stage of design. Compared with existing approximation models in the aerodynamics domain, CNN enables an efficient estimation for the entire velocity field. Furthermore, designers and engineers can directly apply the model in their design space exploration algorithms without training lower-dimensional surrogate models.
Download publicationRelated Resources
See what’s new.
2023
Challenges in Extracting Insights from Life Cycle Assessment Documents During Early Stage DesignKnowledge transfer from LCA documents and building a structured…
2022
AvatAR: An Immersive Analysis Environment for Human Motion Data Combining Interactive 3D Avatars and TrajectoriesAnalysis of human motion data can reveal valuable insights about the…
2017
Annotation Graphs: A Graph-Based Visualization for Meta-Analysis of Data based on User-Authored AnnotationsUser-authored annotations of data can support analysts in the activity…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us