Publication
Dirichlet energy for analysis and synthesis of soft maps
Abstract
Soft maps taking points on one surface to probability distributions on another are attractive for representing surface mappings in the presence of symmetry, ambiguity, and combinatorial complexity. Few techniques, however, are available to measure their continuity and other properties. To this end, we introduce a novel Dirichlet energy for soft maps generalizing the classical map Dirichlet energy, which measures distortion by computing how soft maps transport probabilistic mass from one distribution to another. We formulate the computation of the Dirichlet energy in terms of a differential equation and provide a finite elements discretization that enables all of the quantities introduced to be computed efficiently. We demonstrate the effectiveness of our framework for understanding soft maps arising from various sources. Furthermore, we suggest how these energies can be applied to generate continuous soft or point-to-point maps.
Download publicationRelated Resources
See what’s new.
2025
Jet Engine Efficiency takes off at the Autodesk GallerySee how an Autodesk Research project aimed at making more efficient…
2024
Recently Published by Autodesk ResearchersA selection of papers published recently by Autodesk Researchers…
2004
Temporal Thumbnails: Rapid Visualization of Time-Based Viewing DataWe introduce the concept of the Temporal Thumbnail, used to quickly…
2003
Sentient Data Access via a Diverse Society of DevicesIt has been more than ten years since such “information…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us