Publication
Guiding Real-world SAT Solving with Dynamic Hypergraph Separator Decomposition
AbstractThe general solution of satisfiability problems is NPComplete. Although state-of-the-art SAT solvers can efficiently obtain the solutions of many real-world instances, there are still a large number of real-world SAT families which cannot be solved in reasonable time. Much effort has been spent to take advantage of the internal structure of SAT instances. Existing decomposition techniques are based on preprocessing the static structure of the original problem. We present a dynamic decomposition method based on hypergraph separators. Integrating the separator decomposition into the variable ordering of a modern SAT solver leads to speedups on large real-world satisfiability problems. Compared with a static decomposition based variable ordering, such as Dtree (Huang and Darwiche, 2003), our approach does not need time to construct the full tree decomposition, which sometimes needs more time than the solving process itself. Our primary focus is to achieve speedups on large real-world satisfiability problems. Our results show that the new solver often outperforms both regular zChaff and zChaff integrated with Dtree decomposition. The dynamic separator decomposition shows promise in that it significantly decreases the number of decisions forsome real-world problems.
Download publicationRelated Resources
See what’s new.
2018
ElectroTutor: Test-Driven Physical Computing TutorialsA wide variety of tools for creating physical computing systems have…
2009
Toward the Digital Design Studio: Large Display ExplorationsInspired by our automotive and product design customers using large…
2013
Simulating the Sensing of Building OccupancyAccurate building occupancy information can be beneficial in…
2011
A Simulation Analysis of the Combined Effects of Muscle Strength and Surgical Tensioning on Lateral Pinch Force Following Brachioradialis to Flexor Pollicis Longus TransferBiomechanical simulations of tendon transfers performed following…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us