Journal of Mechanical Design 2025
Multi-split configuration design for fluid-based thermal management systems
Abstract
Multi-split configuration design for fluid-based thermal management systems
Saeid Bayat, Nastaran Shahmansouri, Satya RT Peddada, Alexander Tessier, Adrian Butscher, James T Allison
High power density systems require efficient cooling to maintain their thermal performance. Despite this, as systems get larger and more complex, human practice and insight may not suffice to determine the desired thermal management system designs. To this end, a framework for automatic architecture exploration is presented in this article for a class of single-phase, multi-split cooling systems. For this class of systems, heat generation devices are clustered based on their spatial information, and flow-split are added only when required and at the location of heat devices. To generate different architectures, candidate architectures are represented as graphs. From these graphs, dynamic physics models are created automatically using a graph-based thermal modeling framework. Then, an optimal fluid flow distribution problem is solved by addressing temperature constraints in the presence of exogenous heat loads to achieve optimal performance. The focus in this work is on the design of general multi-split heat management systems. The architectures discussed here can be used for various applications in the domain of configuration design. The multi-split algorithm can produce configurations where splitting can occur at any of the vertices. The results presented include 3 categories of cases and are discussed in detail.
Download publicationAssociated Researchers
Saeid Bayat
University of Illinois at Urbana-Champaign
Nastaran Shahmansouri
Former Autodesk
Satya RT Peddada
University of Illinois at Urbana-Champaign
James T. Allison
University of Illinois at Urbana-Champaign
Related Resources
2024
Exploring Opportunities for Adopting Generative AI in Automotive Conceptual DesignThis research discusses opportunities for adopting generative AI in…
2017
Multiscale Representation of Simulated TimeTo better support multiscale modeling and simulation, we present a…
2021
Robotic assembly of timber joints using reinforcement learningIn architectural construction, automated robotic assembly is…
2022
CAPRI-Net: Learning Compact CAD Shapes with Adaptive Primitive AssemblyWe introduce CAPRI-Net, a self-supervised neural net-work for learning…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us