Publication | ACM SIGGRAPH 2023
Neural Shape Diameter Function for Efficient Mesh Segmentation
Abstract
Neural Shape Diameter Function for Efficient Mesh Segmentation
Bruno Roy
ACM SIGGRAPH 2023
Partitioning a polygonal mesh into meaningful parts can be challenging. Many applications require decomposing such structures for further processing in computer graphics. In the last decade, several methods were proposed to tackle this problem, at the cost of intensive computational times. Recently, machine learning has proven to be effective for the segmentation task on 3D structures. Nevertheless, these state-of-the-art methods are often hardly generalizable and require dividing the learned model into several specific classes of objects to avoid overfitting. We present a data-driven approach leveraging deep learning to encode a mapping function prior to mesh segmentation for multiple applications. Our network reproduces a neighborhood map using our knowledge of the Shape Diameter Function (SDF) method using similarities among vertex neighborhoods. Our approach is resolution-agnostic as we downsample the input meshes and query the full-resolution structure solely for neighborhood contributions. Using our predicted SDF values, we can inject the resulting structure into a graph-cut algorithm to generate an efficient and robust mesh segmentation while considerably reducing the required computation times.
Download publicationRelated Resources
2023
Algorithms for Voxel-based Architectural Space AnalysisThis approach provides a simple and robust way to compute…
2022
SimCURL: Simple Contrastive User Representation Learning from Command SequencesUser modeling is crucial to understanding user behavior and essential…
2021
Fusion 360 Gallery: A Dataset and Environment for Programmatic CAD Construction from Human Design SequencesParametric computer-aided design (CAD) is a standard paradigm used to…
2021
Robotic assembly of timber joints using reinforcement learningIn architectural construction, automated robotic assembly is…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us