Publication
Pouch Motors: Printable Soft Actuators Integrated with Computational Design
Abstract
We propose pouch motors, a new family of printable soft actuators integrated with computational design. The pouch motor consists of one or more inflatable gas-tight bladders made of sheet materials. This printable actuator is designed and fabricated in a planar fashion. It allows both easy prototyping and mass fabrication of affordable robotic systems. We provide theoretical models of the actuators compared with the experimental data. The measured maximum stroke and tension of the linear pouch motor are up to 28% and 100 N, respectively. The measured maximum range of motion and torque of the angular pouch motor are up to 80° and 0.2 N, respectively. We also develop an algorithm that automatically generates the patterns of the pouches and their fluidic channels. A custom-built fabrication machine streamlines the automated process from design to fabrication. We demonstrate a computer-generated life-sized hand that can hold a foam ball and perform gestures with 12 pouch motors, which can be fabricated in 15 min.
Related Resources
See what’s new.
2017
AMI: An Adaptable Music Interface to Support the Varying Needs of People with DementiaDementia is a progressive, degenerative syndrome that erodes…
1988
Rendu realiste de surfaces par la methode du ray tracingLe probleme est de representer une scene sur un plan de projection (…
2011
Two times Technical Achievement Award winner is presenting at the DANSIS SeminarThe two-time Technical Achievement Award by the Academy of Motion…
2023
Recently Published by Autodesk ResearchersA round up of recent publications from scientific journals and…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us