Publication | International Conference on Machine Learning 2022
SkexGen
Autoregressive Generation of CAD Construction Sequences with Disentangled Codebooks
This Autodesk Research paper describes a new approach to generation of solid CAD models that enhances user control and enables efficient exploration of the design space.
Download publicationAbstract
SkexGen: Autoregressive Generation of CAD Construction Sequences with Disentangled Codebooks
Xiang Xu, Karl D.D. Willis, Joseph G. Lambourne, Chin-Yi Cheng, Pradeep Kumar Jayaraman, Yasutaka Furukawa
International Conference on Machine Learning 2022
We present SkexGen, a novel autoregressive generative model for computer-aided design (CAD) construction sequences containing sketch-and-extrude modeling operations. Our model utilizes distinct Transformer architectures to encode topological, geometric, and extrusion variations of construction sequences into disentangled codebooks. Autoregressive Transformer decoders generate CAD construction sequences sharing certain properties specified by the codebook vectors. Extensive experiments demonstrate that our disentangled codebook representation generates diverse and high-quality CAD models, enhances user control, and enables efficient exploration of the design space.
Associated Researchers
Chin-Yi Cheng
Autodesk Research
Yasutaka Furukawa
Simon Fraser University
Related Resources
2024
Wavelet Latent Diffusion: Billion-Parameter 3D Generative Model with Compact Wavelet EncodingsAddressing a common limitation of generative AI models, WaLa encodes…
2023
Leveraging Graph Neural Networks for Graph Regression and Effective Enumeration ReductionGraph-based framework represents aspects of optimal thermal management…
2022
Evolving Through the Looking Glass: Learning Improved Search Spaces with Variational Autoencoders.Nature has spent billions of years perfecting our genetic…
2022
Systems Design and SimulationPredictive models of complex systems will require a more scalable,…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us