Publication
Soft maps between surfaces
AbstractThe problem of mapping between two non-isometric surfaces admits ambiguities on both local and global scales. For instance, symmetries can make it possible for multiple maps to be equally acceptable, and stretching, slippage, and compression introduce difficulties deciding exactly where each point should go. Since most algorithms for point-to-point or even sparse mapping struggle to resolve these ambiguities, in this paper we introduce soft maps, a probabilistic relaxation of point-to-point correspondence that explicitly incorporates ambiguities in the mapping process. In addition to explaining a continuous theory of soft maps, we show how they can be represented using probability matrices and computed for given pairs of surfaces through a convex optimization explicitly trading off between continuity, conformity to geometric descriptors, and spread. Given that our correspondences are encoded in matrix form, we also illustrate how low-rank approximation and other linear algebraic tools can be used to analyze, simplify, and represent both individual and collections of soft maps.
Download publicationRelated Resources
See what’s new.
2016
Interactive Instruction in Bayesian InferenceAn instructional approach is presented to improve human performance in…
2009
Handle Flags: Efficient and flexible selections for inking applicationsThere are a number of challenges associated with content selection in…
2021
Optimal Design of Continuum Robots with Reachability ConstraintsWhile multi-joint continuum robots are highly dexterous and flexible,…
2022
General Electric Collaboration Targets Jet Engine Efficiency with Generative DesignHow Autodesk technologies and researchers are helping General Electric…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us