Publication | International Conference on Machine Learning 2014
Wasserstein propagation for semi-supervised learning
Abstract
Wasserstein propagation for semi-supervised learning
J. Solomon, R. Rustamov, L. Guibas, Adrian Butscher
International Conference on Machine Learning 2014
Probability distributions and histograms are natural representations for product ratings, traffic measurements, and other data considered in many machine learning applications. Thus, this paper introduces a technique for graph-based semi-supervised learning of histograms, derived from the theory of optimal transportation. Our method has several properties making it suitable for this application; in particular, its behavior can be characterized by the moments and shapes of the histograms at the labeled nodes. In addition, it can be used for histograms on non-standard domains like circles, revealing a strategy for manifold-valued semi-supervised learning. We also extend this technique to related problems such as smoothing distributions on graph nodes.
Download publicationAssociated Autodesk Researchers
Justin Solomon
Stanford University
Raif Rustamov
Stanford University
Leonidas Guibas
Stanford University
Related Resources
2024
Experiential Views: Towards Human Experience Evaluation of Designed Spaces using Vision-Language ModelsExploratory research on helping designers and architects anticipate…
2021
MeetingMate: an Ambient Interface for Improved Meeting Effectiveness and Corporate Knowledge SharingWe present MeetingMate, a system for improving meeting effectiveness…
1995
An Experimental Evaluation of Transparent User Interface Tools and InformationThe central research issue addressed by this paper is how we can…
2015
Branching Support Structures for 3D PrintingSupport structures are required for most Additive Manufacturing…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us