Publication 2024
XLB
A Differentiable Massively Parallel Lattice Boltzmann Library in Python
Abstract
XLB: A Differentiable Massively Parallel Lattice Boltzmann Library in Python
Mohammadmehdi Ataei, Hesam Salehipour
The lattice Boltzmann method (LBM) has emerged as a prominent technique for solving fluid dynamics problems due to its algorithmic potential for computational scalability. We introduce XLB library, a Python-based differentiable LBM library based on the JAX platform. The architecture of XLB is predicated upon ensuring accessibility, extensibility, and computational performance, enabling scaling effectively across CPU, TPU, multi-GPU, and distributed multi-GPU or TPU systems. The library can be readily augmented with novel boundary conditions, collision models, or multi-physics simulation capabilities. XLB’s differentiability and data structure is compatible with the extensive JAX-based machine learning ecosystem, enabling it to address physics-based machine learning, optimization, and inverse problems. XLB has been successfully scaled to handle simulations with billions of cells, achieving giga-scale lattice updates per second.
XLB is released under the permissive Apache-2.0 license and is available on GitHub.
Download publicationRelated Resources
2025
WhatELSE: Shaping Narrative Spaces at Configurable Level of Abstraction for AI-bridged Interactive StorytellingWe present an AI-bridged interactive narration authoring system that…
2024
FluidsFormer: A Transformer-Based Approach for Continuous Fluid InterpolationGiven input keyframes, our approach interpolates substeps of a fluid…
2021
LSD-StructureNet: Modeling Levels of Structural Detail in 3D Part HierarchiesGenerative models for 3D shapes represented by hierarchies of parts…
2022
Assemble Them All: Physics-Based Planning for Generalizable Assembly by DisassemblyThis work proposes a novel method to efficiently plan physically…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us