Publication
Gluing constructions amongst constant mean curvature hypersurfaces in the (n+1)-sphere
AbstractFour constructions of constant mean curvature (CMC) hypersurfaces in the (n+1)-sphere are given, which should be considered analogues of ‘classical’ constructions that are possible for CMC hypersurfaces in Euclidean space. First, Delaunay-like hypersurfaces, consisting roughly of a chain of hyperspheres winding multiple times around an equator, are shown to exist for all the values of the mean curvature. Second, a hypersurface is constructed which consists of two chains of spheres winding around a pair of orthogonal equators, showing that Delaunay-like hypersurfaces can be fused together in a symmetric manner. Third, a Delaunay-like handle can be attached to a generalized Clifford torus of the same mean curvature. Finally, two generalized Clifford tori of equal but opposite mean curvature of any magnitude can be attached to each other by symmetrically positioned Delaunay-like ‘arms’. This last result extends Butscher and Pacard’s doubling construction for generalized Clifford tori of small mean curvature.
Download publicationRelated Resources
See what’s new.
2024
The Problem of Generative Parroting: Navigating Toward Responsible AI (Part 3)The third part of this series explores using Masked Autoencoders to…
2022
SkyGlyphs: Reflections on the Design of a Delightful VisualizationExploring data by leveraging curiosity, inciting delight, and…
2009
Toward the Digital Design Studio: Large Display ExplorationsInspired by our automotive and product design customers using large…
2011
Design and Evaluation of a Command Recommendation System for Software ApplicationsWe examine the use of modern recommender system technology to aid…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us