Publication | Parallel Problem Solving From Nature (PPSN) 2022
Evolving Through the Looking Glass
Learning Improved Search Spaces with Variational Autoencoders
We show how generative machine learning can learn a representation corresponding to a valid region of search space, enabling optimizers to search in the new latent space and always find solutions that satisfy constraints or additional criteria. This work continues previous work and demonstrates the method for more complex constraints and additional criteria.
Download publicationAbstract
Evolving Through the Looking Glass: Learning Improved Search Spaces with Variational Autoencoders.
Bentley, P. J., Lim, S. L., Gaier, A. and Tran, L.
Parallel Problem Solving From Nature (PPSN) 2022
Nature has spent billions of years perfecting our genetic representations, making them evolvable and expressive. Generative machine learning offers a shortcut: learn an evolvable latent space with implicit biases towards better solutions. We present SOLVE: Search space Optimization with Latent Variable Evolution, which creates a dataset of solutions that satisfy extra problem criteria or heuristics, generates a new latent search space, and uses a genetic algorithm to search within this new space to find solutions that meet the overall objective. We investigate SOLVE on five sets of criteria designed to detrimentally affect the search space and explain how this approach can be easily extended as the problems become more complex. We show that, compared to an identical GA using a standard representation, SOLVE with its learned latent representation can meet extra criteria and find solutions with distance to optimal up to two orders of magnitude closer. We demonstrate that SOLVE achieves its results by creating better search spaces that focus on desirable regions, reduce discontinuities, and enable improved search by the genetic algorithm.
Associated Researchers
Soo Ling Lim
University College London
Linh Tran
Autodesk AI Lab
Related Resources
2021
Neural UpFlow: A Scene Flow Learning Approach to Increase the Apparent Resolution of Particle-Based LiquidsIn this research, we introduce a data-driven approach to increase the…
2022
SkexGen: Autoregressive Generation of CAD Construction Sequences with Disentangled CodebooksWe present SkexGen, a novel autoregressive generative model for…
2020
Contrastive Multi-View Representation Learning on GraphsWe introduce a self-supervised approach for learning node and graph…
2020
Memory-Based Graph NetworksGraph neural networks (GNNs) are a class of deep models that operate…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us