Publication | International Conference on Machine Learning 2020
Learning to Simulate and Design for Structural Engineering
Abstract
Learning to Simulate and Design for Structural Engineering
Kai-Hung Chang, Chin-Yi Cheng
International Conference on Machine Learning 2020
The structural design process for buildings is time consuming and laborious. To automate this process, structural engineers combine optimization methods with simulation tools to find an optimal design with minimal building mass subject to building regulations. However, structural engineers in practice often avoid optimization and compromise on a suboptimal design for the majority of buildings, due to the large size of the design space, the iterative nature of the optimization methods, and the slow simulation tools. In this work, we formulate the building structures as graphs and create an end-to-end pipeline that can learn to propose the optimal cross-sections of columns and beams by training together with a pre-trained differentiable structural simulator. The performance of the proposed structural designs is comparable to the ones optimized by genetic algorithm (GA), with all the constraints satisfied. The optimal structural design with the reduced the building mass can not only lower the material cost, but also decrease the carbon footprint.
Download publicationRelated Resources
2023
Generating Pragmatic Examples to Train Neural Program SynthesizersUsing neural networks is a novel way to amortize a synthesizer’s…
2024
Experiential Views: Towards Human Experience Evaluation of Designed Spaces using Vision-Language ModelsExploratory research on helping designers and architects anticipate…
2023
Language Model Crossover: Variation through Few-Shot PromptingPursuing the insight that language models naturally enable an…
2022
Neural Implicit Style-Net: synthesizing shapes in a preferred style exploiting self supervisionWe introduce a novel approach to disentangle style from content in the…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us