Publication | International Conference on Machine Learning 2021
Robust Representation Learning via Perceptual Similarity Metrics
This paper introduces a general framework for learning representations from images/objects that are invariant to bias in data for downstream classification tasks.
Download publicationAbstract
Robust Representation Learning via Perceptual Similarity Metrics
Saeid Asgari Taghanaki, Kristy Choi, Amir Khasahmadi, Anirudh Goyal
International Conference on Machine Learning 2021
A fundamental challenge in artificial intelligence is learning useful representations of data that yield good performance on a downstream task, without overfitting to spurious input features. Extracting such task-relevant predictive information is particularly difficult for real-world datasets. In this work, we propose Contrastive Input Morphing (CIM), a representation learning framework that learns input-space transformations of the data to mitigate the effect of irrelevant input features on downstream performance. Our method leverages a perceptual similarity metric via a triplet loss to ensure that the transformation preserves task-relevant information.Empirically, we demonstrate the efficacy of our approach on tasks which typically suffer from the presence of spurious correlations: classification with nuisance information, out-of-distribution generalization, and preservation of subgroup accuracies. We additionally show that CIM is complementary to other mutual information-based representation learning techniques, and demonstrate that it improves the performance of variational information bottleneck (VIB) when used together.
Related Resources
See what’s new.
2024
Elicitron: An LLM Agent-Based Simulation Framework for Design Requirements ElicitationA novel framework that leverages Large Language Models (LLMs) to…
2022
JoinABLe: Learning Bottom-up Assembly of Parametric CAD JointsPhysical products are often complex assemblies combining a multitude…
2019
Relational Graph Representation Learning for Open-Domain Question AnsweringWe introduce a relational graph neural network with bi-directional…
2022
CAPRI-Net: Learning Compact CAD Shapes with Adaptive Primitive AssemblyWe introduce CAPRI-Net, a self-supervised neural net-work for learning…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us